(x+1/2x)+1=100

Simple and best practice solution for (x+1/2x)+1=100 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (x+1/2x)+1=100 equation:



(x+1/2x)+1=100
We move all terms to the left:
(x+1/2x)+1-(100)=0
Domain of the equation: 2x)!=0
x!=0/1
x!=0
x∈R
We add all the numbers together, and all the variables
(+x+1/2x)+1-100=0
We add all the numbers together, and all the variables
(+x+1/2x)-99=0
We get rid of parentheses
x+1/2x-99=0
We multiply all the terms by the denominator
x*2x-99*2x+1=0
Wy multiply elements
2x^2-198x+1=0
a = 2; b = -198; c = +1;
Δ = b2-4ac
Δ = -1982-4·2·1
Δ = 39196
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{39196}=\sqrt{4*9799}=\sqrt{4}*\sqrt{9799}=2\sqrt{9799}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-198)-2\sqrt{9799}}{2*2}=\frac{198-2\sqrt{9799}}{4} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-198)+2\sqrt{9799}}{2*2}=\frac{198+2\sqrt{9799}}{4} $

See similar equations:

| x²-9+14=0 | | 3x+x+15=32 | | 5n-16=n+30 | | -5(6-x)=-15x | | -2(3n-4)=2n | | 4x-7x=-3x | | 3(x-3)^2=27 | | -100=24t-4t^2 | | -100=24t-4 | | 8=b/9+10 | | 21x^2+10x=5x+6 | | 2(2x+4)=8x+3-4x+5 | | 6n-4=116 | | 6x+29x-8=7(5x+4) | | -8-3b=7 | | -10x-1=-91 | | 4x-11+2x+9=118 | | 9x+2=7+30-5 | | 4x+5+2x=30+14 | | H(2)=1/2(3x2-4)^2 | | 5x+15x-4=4(5x+4) | | P=50x-10 | | 0=-12+x/7 | | 4x+5x-32=64-7x | | G(-4)=-7x+3 | | 8x+5x-40=80+7x | | (-4)=-7x+3 | | F(8)=-1/2x2 | | 6x-8=2x+76 | | -1.5-x=-5 | | 2(x+6)-5x=9 | | –4−11z=–3z−8z+15 |

Equations solver categories