(x+10)(2x+5)-(x+2)(x-2)=150

Simple and best practice solution for (x+10)(2x+5)-(x+2)(x-2)=150 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (x+10)(2x+5)-(x+2)(x-2)=150 equation:



(x+10)(2x+5)-(x+2)(x-2)=150
We move all terms to the left:
(x+10)(2x+5)-(x+2)(x-2)-(150)=0
We use the square of the difference formula
x^2+(x+10)(2x+5)+4-150=0
We multiply parentheses ..
x^2+(+2x^2+5x+20x+50)+4-150=0
We add all the numbers together, and all the variables
x^2+(+2x^2+5x+20x+50)-146=0
We get rid of parentheses
x^2+2x^2+5x+20x+50-146=0
We add all the numbers together, and all the variables
3x^2+25x-96=0
a = 3; b = 25; c = -96;
Δ = b2-4ac
Δ = 252-4·3·(-96)
Δ = 1777
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(25)-\sqrt{1777}}{2*3}=\frac{-25-\sqrt{1777}}{6} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(25)+\sqrt{1777}}{2*3}=\frac{-25+\sqrt{1777}}{6} $

See similar equations:

| 8x-29=3x+11 | | 4x-x/2-3=0 | | (8x-4)=x | | 3(3x+2)+x=56 | | 8x+4=3/2 | | 33=-11x5x | | 8−31​x=16 | | -40-8x=-5x+29 | | d5+10=7 | | -v+5+6v=2+2.5(-3+2v) | | 3(r+5)+2=26 | | 3x+1/2=7/4 | | -207-12x=4x+97 | | 7g+4=15 | | |4x-1|=|3x-20| | | 3x+7=x+31 | | 4x-13=119 | | 1.8=1.8x0.5x0.5 | | -35=35-5t-5t^2 | | 3x+22=422=4 | | 2(x+3)-(2-x)=8-3x | | 4(5x-4)-3(3x+7)=-169 | | 3/5*6=x | | 4x+12=15+2x | | 3/5×6=y | | 2.5y-4y=1 | | 3=3+9t-5t^2 | | 12+8s-3s=1 | | -(x/2)=23 | | 11-x/7=4x+1 | | 10=61-6t-5t^2 | | 2*2+1x=−6x−5 |

Equations solver categories