(x+10)(x-5)=(x+)

Simple and best practice solution for (x+10)(x-5)=(x+) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (x+10)(x-5)=(x+) equation:



(x+10)(x-5)=(x+)
We move all terms to the left:
(x+10)(x-5)-((x+))=0
We add all the numbers together, and all the variables
(x+10)(x-5)-((+x))=0
We multiply parentheses ..
(+x^2-5x+10x-50)-((+x))=0
We calculate terms in parentheses: -((+x)), so:
(+x)
We get rid of parentheses
x
Back to the equation:
-(x)
We add all the numbers together, and all the variables
(+x^2-5x+10x-50)-1x=0
We get rid of parentheses
x^2-5x+10x-1x-50=0
We add all the numbers together, and all the variables
x^2+4x-50=0
a = 1; b = 4; c = -50;
Δ = b2-4ac
Δ = 42-4·1·(-50)
Δ = 216
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{216}=\sqrt{36*6}=\sqrt{36}*\sqrt{6}=6\sqrt{6}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-6\sqrt{6}}{2*1}=\frac{-4-6\sqrt{6}}{2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+6\sqrt{6}}{2*1}=\frac{-4+6\sqrt{6}}{2} $

See similar equations:

| 39.6=x+1.20x | | 2^x=30x | | 12y+30+90=0 | | 4x-13+9x+11=180 | | 17-9y=-33+16y | | 8x+4(1-5x)=-6x-14 | | -6y=14+4y=32 | | 8x+4(1-5x)=-6-14 | | 0=15z^2+z-2 | | 51=-9s+5 | | 3x-47=22 | | 11/10x=44/5 | | 0.15(y-0.2=2-0.5(1-y) | | 3x*4x*5x=0 | | 2/m=5/14 | | 27=y/4+10 | | 14=2x−6+3x | | 4y-2=2y+27 | | x–4=5 | | 7x+23=5x+63 | | (3x+40)+(2x+10)=180 | | 2a-(8a-1)-(a+2)*5=9 | | -2k-5=-13 | | 11x+8*160000-8x=1720000 | | |x-4|-10=1  | | 8-8j=10j | | 2(2x−1)6  = x+3≤−6 | | |4x+3|=3-x | | 2(2x−1)6  =  x+3≤−6 | | 8x-27=180 | | p/4−2=4 | | 5x+9=2(3x+4) |

Equations solver categories