If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(x+11)+(2x-3)+(2x+6)(2x+15)+(3x-19)+(3x-5)+(4x-9)+(5x)=360
We move all terms to the left:
(x+11)+(2x-3)+(2x+6)(2x+15)+(3x-19)+(3x-5)+(4x-9)+(5x)-(360)=0
We add all the numbers together, and all the variables
5x+(x+11)+(2x-3)+(2x+6)(2x+15)+(3x-19)+(3x-5)+(4x-9)-360=0
We get rid of parentheses
5x+x+2x+(2x+6)(2x+15)+3x+3x+4x+11-3-19-5-9-360=0
We multiply parentheses ..
(+4x^2+30x+12x+90)+5x+x+2x+3x+3x+4x+11-3-19-5-9-360=0
We add all the numbers together, and all the variables
(+4x^2+30x+12x+90)+18x-385=0
We get rid of parentheses
4x^2+30x+12x+18x+90-385=0
We add all the numbers together, and all the variables
4x^2+60x-295=0
a = 4; b = 60; c = -295;
Δ = b2-4ac
Δ = 602-4·4·(-295)
Δ = 8320
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{8320}=\sqrt{64*130}=\sqrt{64}*\sqrt{130}=8\sqrt{130}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(60)-8\sqrt{130}}{2*4}=\frac{-60-8\sqrt{130}}{8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(60)+8\sqrt{130}}{2*4}=\frac{-60+8\sqrt{130}}{8} $
| 6i+1=3-i | | 6i+1=÷3-i | | x+3-12=10 | | x3+12=10 | | (15x)/(1.03)=25 | | -2v+10=-7(v+5) | | 4(u-3)-8u=4 | | (14x)/(1.02)=25 | | 1.5x400=600 | | 8y–(5y+2)=16 | | |m+2|+2=22 | | 2.3=p+0.6* | | 1/2x+5x=8 | | Y=x^2/5 | | 6.2x-3.7(x-1)=6.9 | | 4.3x-2.7(x-1)=6.2 | | 4.6x+2.3(x-1)=6.3 | | 0.7x+4.1=4.8x | | 4X=2x*12 | | 0.4y+12.3=4.5y | | -4(t-2)+8t=6t-1 | | 3x+5+x=3 | | 40+5×x=70 | | N-7n=15 | | 2.5(10x+8)+3=x | | 2x-1/3=x+2/4-1 | | 3n-11.58=1.94 | | (x)2=-4+-3 | | 2g+3.28=-0.89 | | -3z-13.89=-2.68 | | x=-4+-3 | | (y-2)(2y+3)(3y-4)^2=0. |