(x+12)(x+3)+(5x-6)=180

Simple and best practice solution for (x+12)(x+3)+(5x-6)=180 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (x+12)(x+3)+(5x-6)=180 equation:



(x+12)(x+3)+(5x-6)=180
We move all terms to the left:
(x+12)(x+3)+(5x-6)-(180)=0
We get rid of parentheses
(x+12)(x+3)+5x-6-180=0
We multiply parentheses ..
(+x^2+3x+12x+36)+5x-6-180=0
We add all the numbers together, and all the variables
(+x^2+3x+12x+36)+5x-186=0
We get rid of parentheses
x^2+3x+12x+5x+36-186=0
We add all the numbers together, and all the variables
x^2+20x-150=0
a = 1; b = 20; c = -150;
Δ = b2-4ac
Δ = 202-4·1·(-150)
Δ = 1000
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{1000}=\sqrt{100*10}=\sqrt{100}*\sqrt{10}=10\sqrt{10}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(20)-10\sqrt{10}}{2*1}=\frac{-20-10\sqrt{10}}{2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(20)+10\sqrt{10}}{2*1}=\frac{-20+10\sqrt{10}}{2} $

See similar equations:

| X/5=3,x | | 79x=105 | | X+4=11,x | | t^2+8t+2=22 | | X-3=7,x | | x*4/7=64 | | 5(x-6)+8=7x=10 | | 4x-5=11,x | | 3x+8=17,x | | X/2+1=11,x | | 6x^2+24x-537.6=0 | | X/3-1=2,x | | x2−8x−105=0 | | -5=11-2(x+4) | | 2x=x+7,x | | P^2=8p-35 | | -2/5+7/3x-1=x/6+7/5 | | 3x=8-x,x | | -9.0=2.5+4(x+3) | | 9y-17y+8=0 | | 3(3x-8)=6 | | 2.3x-3=1.8x+5 | | -11/2x+11/2=1/2(3-x) | | 11+6(x+5)=7 | | -9+m=7+3m | | x+16+53=180 | | -1(1y+5)=-3 | | q^2+4q-20=0 | | 7(x+7)=16(x-1) | | 2²+a=20 | | x^2+28x-29=0 | | 5x+1=-3x+5 |

Equations solver categories