(x+12)+x=5/14x+x

Simple and best practice solution for (x+12)+x=5/14x+x equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (x+12)+x=5/14x+x equation:



(x+12)+x=5/14x+x
We move all terms to the left:
(x+12)+x-(5/14x+x)=0
Domain of the equation: 14x+x)!=0
x∈R
We add all the numbers together, and all the variables
(x+12)+x-(+x+5/14x)=0
We add all the numbers together, and all the variables
x+(x+12)-(+x+5/14x)=0
We get rid of parentheses
x+x-x-5/14x+12=0
We multiply all the terms by the denominator
x*14x+x*14x-x*14x+12*14x-5=0
Wy multiply elements
14x^2+14x^2-14x^2+168x-5=0
We add all the numbers together, and all the variables
14x^2+168x-5=0
a = 14; b = 168; c = -5;
Δ = b2-4ac
Δ = 1682-4·14·(-5)
Δ = 28504
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{28504}=\sqrt{4*7126}=\sqrt{4}*\sqrt{7126}=2\sqrt{7126}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(168)-2\sqrt{7126}}{2*14}=\frac{-168-2\sqrt{7126}}{28} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(168)+2\sqrt{7126}}{2*14}=\frac{-168+2\sqrt{7126}}{28} $

See similar equations:

| 30+16=2x(15+) | | 17=q-2 | | -10x-15x=25 | | 2/3x+5-10=15 | | 40=4q+8 | | 3x-75=360 | | 4/7x1/4=4/28 | | 1/4x4/7=4/28 | | x+0.8x=63 | | 100=(7+15.59x) | | x=-0.8x | | 8=2y6 | | y=0.3*75-2 | | 4+r=15;r+11 | | y=0.3*66-2 | | x16=3/8 | | 21=2u+5 | | 19=p+3p=22 | | x/16=38 | | 4(5r+2)=208 | | 6n+8=112 | | 5.2+x=1.95 | | 37=2g+5 | | –q+12q=–11 | | X2+4x=600 | | -3x^2+24x-12=0 | | 30+k=35 | | 10c^2-19c+6=0 | | 4x+6=2(-3x+5)-4 | | w+7.32=9.22 | | 9=p-15 | | 0.80x=60 |

Equations solver categories