If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(x+19)(19x)=0
We multiply parentheses
19x^2+361x=0
a = 19; b = 361; c = 0;
Δ = b2-4ac
Δ = 3612-4·19·0
Δ = 130321
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{130321}=361$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(361)-361}{2*19}=\frac{-722}{38} =-19 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(361)+361}{2*19}=\frac{0}{38} =0 $
| 4v+v=5 | | x2+14x-87=0 | | 11p−5p=12 | | x-7=0.4x-1 | | 11k-8k=9 | | (x-7)(2x)=15 | | 13+-5=1+11y | | 3y=-96+9 | | 6x+3=-3x-15 | | 2.3m=18.4 | | -(v-1)=-6+16 | | 3+4x=5x-2 | | 7x+12=-118 | | (x+5)(x+3)=99 | | n/3=-32 | | 12x-3x=18 | | y=-17-136 | | 3.6-r=9.8 | | 4x-7+3x+5=152 | | 5y+6=10 | | x+12=211 | | 6(x)=45 | | 1/8w=7 | | 5x-7=9x-22 | | 10x-8=-(5x-4) | | 14x-17=-191 | | 4x+32=6x+4 | | 4x+32=6x^2+4 | | y=4-67 | | 6n=234n= | | 6/4=x/1/3 | | 27^4x=9 |