(x+2)(x+1)=x+3

Simple and best practice solution for (x+2)(x+1)=x+3 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (x+2)(x+1)=x+3 equation:



(x+2)(x+1)=x+3
We move all terms to the left:
(x+2)(x+1)-(x+3)=0
We get rid of parentheses
(x+2)(x+1)-x-3=0
We multiply parentheses ..
(+x^2+x+2x+2)-x-3=0
We add all the numbers together, and all the variables
(+x^2+x+2x+2)-1x-3=0
We get rid of parentheses
x^2+x+2x-1x+2-3=0
We add all the numbers together, and all the variables
x^2+2x-1=0
a = 1; b = 2; c = -1;
Δ = b2-4ac
Δ = 22-4·1·(-1)
Δ = 8
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{8}=\sqrt{4*2}=\sqrt{4}*\sqrt{2}=2\sqrt{2}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(2)-2\sqrt{2}}{2*1}=\frac{-2-2\sqrt{2}}{2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(2)+2\sqrt{2}}{2*1}=\frac{-2+2\sqrt{2}}{2} $

See similar equations:

| 1.2-0.8=2.0m | | V+9/3+v+5/4+v+7/5=8 | | -14x=-60+x | | 7x-5=7x-28 | | 8x+(-(-x-8))=x-(x+5) | | 10+x-8=6 | | x+(-(-x-8))=x-(x+5)) | | (2x+9)(5x-9)=0 | | 3x^2/3=24 | | 6y-2(y=3)=10 | | 20-4/5x=-4/5x+20 | | 13=-14a+3a | | 3x-7=96x+5 | | X2-x-20=20 | | 3(2x+1)/5=3 | | 5w^2+19w+18=0 | | (c/5)+5=-2 | | 39=28-5c | | n+(3/5)=(1/3) | | -1/2m=4 | | 5x-(-(9x+31))=25+6x | | 9x+8=-8x-5 | | x+44=36 | | 9x+8=8x-5 | | 9x-(+(-4x+32))=13+x | | (x-3)(x+1)=(x-2) | | 2x+(-(-9x-3))=14+2x | | 25=n+29 | | 4x-(-(-x+24))=13+x | | s+35=-23 | | 1/5a-5=60 | | 2/5a-15=60 |

Equations solver categories