(x+2)(x+5)=(x+3)

Simple and best practice solution for (x+2)(x+5)=(x+3) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (x+2)(x+5)=(x+3) equation:



(x+2)(x+5)=(x+3)
We move all terms to the left:
(x+2)(x+5)-((x+3))=0
We multiply parentheses ..
(+x^2+5x+2x+10)-((x+3))=0
We calculate terms in parentheses: -((x+3)), so:
(x+3)
We get rid of parentheses
x+3
Back to the equation:
-(x+3)
We get rid of parentheses
x^2+5x+2x-x+10-3=0
We add all the numbers together, and all the variables
x^2+6x+7=0
a = 1; b = 6; c = +7;
Δ = b2-4ac
Δ = 62-4·1·7
Δ = 8
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{8}=\sqrt{4*2}=\sqrt{4}*\sqrt{2}=2\sqrt{2}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6)-2\sqrt{2}}{2*1}=\frac{-6-2\sqrt{2}}{2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6)+2\sqrt{2}}{2*1}=\frac{-6+2\sqrt{2}}{2} $

See similar equations:

| c+2=-10 | | 6h2−3h−8=0 | | (x+2)(x+5)=(x+3)² | | 2923=37(p+10) | | 10y–3y+22=71y= | | 35=5/6u | | 4=t/4,5 | | 3w+47=4w | | x+(4/5x-90)=90 | | 1/2x+7/3=1x+5/6 | | y=-1.3×+6.9 | | 6x+x^2-52=0 | | 22=-6-4x | | 28g^2-3g=0 | | -9(v+6)=-5v-30 | | 4066=38(p+40) | | 12^2+4x-3=0 | | z+5/4=2z+1/4 | | 3/x+4/x=14 | | 63(x+2)+9=13+5x | | 9b3-70b2-16b=0 | | p^2+38p=0 | | y-12/8=7 | | 512^5x-1=(1/8)^-4-x | | 2a²=8a-15=3a-3 | | 8=w+37/7 | | x(30x^2)-230x^2-88x=40 | | 13x+4x=19-6x | | r/5+34=40 | | 57.99+0.11d=58.43 | | 2a-20.3=a+2.7 | | 49x^2+84x+32=0 |

Equations solver categories