(x+2)*(3+x)=(3-x)2+5x

Simple and best practice solution for (x+2)*(3+x)=(3-x)2+5x equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (x+2)*(3+x)=(3-x)2+5x equation:



(x+2)(3+x)=(3-x)2+5x
We move all terms to the left:
(x+2)(3+x)-((3-x)2+5x)=0
We add all the numbers together, and all the variables
(x+2)(x+3)-((-1x+3)2+5x)=0
We multiply parentheses ..
(+x^2+3x+2x+6)-((-1x+3)2+5x)=0
We calculate terms in parentheses: -((-1x+3)2+5x), so:
(-1x+3)2+5x
We add all the numbers together, and all the variables
5x+(-1x+3)2
We multiply parentheses
5x-2x+6
We add all the numbers together, and all the variables
3x+6
Back to the equation:
-(3x+6)
We get rid of parentheses
x^2+3x+2x-3x+6-6=0
We add all the numbers together, and all the variables
x^2+2x=0
a = 1; b = 2; c = 0;
Δ = b2-4ac
Δ = 22-4·1·0
Δ = 4
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{4}=2$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(2)-2}{2*1}=\frac{-4}{2} =-2 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(2)+2}{2*1}=\frac{0}{2} =0 $

See similar equations:

| 4(x-1)-5(20-x)=12(4-7x)-100 | | 3x+18=4x+17 | | 2x-13=3(x-2)-9 | | 3(2x+2)=3x+21 | | 5(x+3)+4=4x+27 | | 2(2x-4)=-32 | | x2-4x+11=0 | | 12x-1=3x+26 | | 3(3x-4)+6=30 | | 4(-2y+-8)=-64 | | -4x-20=-3x-25 | | 100-10x=1000 | | 1-3x2=96 | | -3+k=-22 | | -6+n=13 | | 13•x-12=40 | | 18x^2+49x-49=0 | | 19x^2+49x-49=0 | | -(2x1)=2+(-3x+5) | | -(2x1)=2+(-3x+5 | | 6x-x^2=7 | | x-x^2=1.16 | | 12-5x=4+(4+x) | | 7x-4=2x-1* | | 8(4x−2)=80 | | 25k^2+20k-21=0 | | 2(2x+5)=26 | | x+21=4(x-3) | | -39=4(2x-4)+1 | | 4(4x-5)=44 | | 8y-20=180 | | -2x+28=4(x-4)-4 |

Equations solver categories