(x+2)*(x-3)-(2x-5)*(x+3)=x*(x-5)

Simple and best practice solution for (x+2)*(x-3)-(2x-5)*(x+3)=x*(x-5) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (x+2)*(x-3)-(2x-5)*(x+3)=x*(x-5) equation:



(x+2)(x-3)-(2x-5)(x+3)=x(x-5)
We move all terms to the left:
(x+2)(x-3)-(2x-5)(x+3)-(x(x-5))=0
We multiply parentheses ..
(+x^2-3x+2x-6)-(2x-5)(x+3)-(x(x-5))=0
We calculate terms in parentheses: -(x(x-5)), so:
x(x-5)
We multiply parentheses
x^2-5x
Back to the equation:
-(x^2-5x)
We get rid of parentheses
x^2-x^2-3x+2x-(2x-5)(x+3)+5x-6=0
We multiply parentheses ..
x^2-x^2-(+2x^2+6x-5x-15)-3x+2x+5x-6=0
We add all the numbers together, and all the variables
-(+2x^2+6x-5x-15)+4x-6=0
We get rid of parentheses
-2x^2-6x+5x+4x+15-6=0
We add all the numbers together, and all the variables
-2x^2+3x+9=0
a = -2; b = 3; c = +9;
Δ = b2-4ac
Δ = 32-4·(-2)·9
Δ = 81
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{81}=9$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(3)-9}{2*-2}=\frac{-12}{-4} =+3 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(3)+9}{2*-2}=\frac{6}{-4} =-1+1/2 $

See similar equations:

| 12a-24=12+9a | | 4×(x+3)=20 | | -2x+13=4x-7 | | 3x+15=39. | | 5-x=0.04 | | 89x-9=9 | | x+x+23=73 | | 0.4(x)=148 | | 1/3(9x-6)=1/2(8x-4) | | -x+35=-6x+100 | | x-11=-2x-8 | | 4(3x-1)=2x+16 | | 3(4x+1)+10=-11 | | 4(5x-2)+9=41 | | 30=5(x+1)+10 | | 5(4x+4)=5x+35 | | -8x-17=-1 | | -4x-32=-5x-26 | | 4-5t=t-14 | | 24=2(4x-4) | | 3x=149/5 | | 8+x=16−5 | | x−14=17 | | 8^x=128^3 | | 20p=100p= | | -19,8y=49,1 | | −18−1,8y=45,6+3,5y. | | -19,8y=49,1y | | 5(x–2)+x=2x+18) | | 52+122=x2 | | 8,80/100=0,23/x | | x/12^x=127(6)^x |

Equations solver categories