(x+2)2+2(x-1)=(x-4)(x-1)

Simple and best practice solution for (x+2)2+2(x-1)=(x-4)(x-1) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (x+2)2+2(x-1)=(x-4)(x-1) equation:



(x+2)2+2(x-1)=(x-4)(x-1)
We move all terms to the left:
(x+2)2+2(x-1)-((x-4)(x-1))=0
We multiply parentheses
2x+2x-((x-4)(x-1))+4-2=0
We multiply parentheses ..
-((+x^2-1x-4x+4))+2x+2x+4-2=0
We calculate terms in parentheses: -((+x^2-1x-4x+4)), so:
(+x^2-1x-4x+4)
We get rid of parentheses
x^2-1x-4x+4
We add all the numbers together, and all the variables
x^2-5x+4
Back to the equation:
-(x^2-5x+4)
We add all the numbers together, and all the variables
4x-(x^2-5x+4)+2=0
We get rid of parentheses
-x^2+4x+5x-4+2=0
We add all the numbers together, and all the variables
-1x^2+9x-2=0
a = -1; b = 9; c = -2;
Δ = b2-4ac
Δ = 92-4·(-1)·(-2)
Δ = 73
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(9)-\sqrt{73}}{2*-1}=\frac{-9-\sqrt{73}}{-2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(9)+\sqrt{73}}{2*-1}=\frac{-9+\sqrt{73}}{-2} $

See similar equations:

| 2^x.5=37 | | 2x.5=37 | | 4x²=8x-9 | | 14-24=-3x+6+4× | | 2/3x-8=30 | | -x/4=x/5 | | (2x^2)-2x+122=0 | | 4x²+8-9=0 | | -3x+6+4×=14-24 | | 14x-12-x-4=96 | | 6z=3z-10+2z | | +x^2-14x+3=0 | | x=9*3 | | 4x2+8x-9=0 | | A^3+5=A/316a^2 | | 3x/10=7x/8 | | 3x/10=7x/8-23 | | x^2=653^2 | | 11m-2=30 | | 2/5(7/8-4x)-7/8=1/8 | | -16=3y+3 | | (x+x)=4-6x | | -.5n-9=-.5n+.75 | | 3-11/n=-10/n^2 | | 2160=(24000)0.03t | | (x*8.25)+x=369 | | 15r2=3r | | x/4+x/7=11 | | 10d/4-8;d=6 | | 2(x+3)=5(x=1)-4 | | -3=½(n-6) | | 6x-(2x+11)=13 |

Equations solver categories