If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(x+20)(3x)=180
We move all terms to the left:
(x+20)(3x)-(180)=0
We multiply parentheses
3x^2+60x-180=0
a = 3; b = 60; c = -180;
Δ = b2-4ac
Δ = 602-4·3·(-180)
Δ = 5760
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{5760}=\sqrt{576*10}=\sqrt{576}*\sqrt{10}=24\sqrt{10}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(60)-24\sqrt{10}}{2*3}=\frac{-60-24\sqrt{10}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(60)+24\sqrt{10}}{2*3}=\frac{-60+24\sqrt{10}}{6} $
| 13w−10w=15 | | -5=-1/4x | | 11.2x-6.3x=39.2 | | 12x+20=36x+12 | | 20x+20+8x-8+10x=180 | | x/9+16=19 | | -7p-12=6-7p-3p | | 2(2m+1)+2m=3m-7 | | 6x=2(3x-1)=82 | | -3x-(-15x-45)=-51 | | `12x+5=2(6x+1)` | | +3+1=7x | | 2.25x+1/2=44 | | 7(-5u+15)+19u=-8-16u-6 | | –2n+ 1=0 | | 4x+7=-x+2 | | 10x+6x+2x=180 | | -6+6x=4-4x+2x | | 2x-9=1x+5 | | 3=z/5-4 | | -6+11x=41 | | 7(2x-3)-3x=2x+24 | | 2x-20+2x+10+x=180 | | –b−7+8=b+7 | | 10x+6x=2x | | -x6x=-42 | | 2w+9w+1-5=8w+3w+5-9 | | -6y+11=41 | | 7x+2x-3=5+8x | | |8-2p|=2 | | (3x+2)+(x+7)+(5x)=180 | | x=1^-999999999999999999999999999999999999999999999999999999999999999999999999999 |