If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(x+20)(x-4)=1904
We move all terms to the left:
(x+20)(x-4)-(1904)=0
We multiply parentheses ..
(+x^2-4x+20x-80)-1904=0
We get rid of parentheses
x^2-4x+20x-80-1904=0
We add all the numbers together, and all the variables
x^2+16x-1984=0
a = 1; b = 16; c = -1984;
Δ = b2-4ac
Δ = 162-4·1·(-1984)
Δ = 8192
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{8192}=\sqrt{4096*2}=\sqrt{4096}*\sqrt{2}=64\sqrt{2}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(16)-64\sqrt{2}}{2*1}=\frac{-16-64\sqrt{2}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(16)+64\sqrt{2}}{2*1}=\frac{-16+64\sqrt{2}}{2} $
| 4x-(6-3)= | | 1i=10 | | 3(5-2x)-1=8 | | 13=-8w+3(w-4) | | 112=-16(96)^2+96t=4 | | 6x+15=6(x-3 | | 1.8+2n=9.5-4n | | 2.5(t+2)-6=9 | | 34=23y-y^2 | | x(x-2)=3x(x+2)-3 | | 112=-16(96)^2+96t+4 | | (y–5)(y+9)=54 | | (y–5)(y+9)=4 | | (1)/(x)+(1)/(x+4)=(1)/(3) | | 66=4(2x+8)+2x | | X^2-850x-770000=0 | | 22=5y-63 | | x÷5+11=1÷15 | | 0.4/1=0.2/x | | 2.4x+40.8=17.2-9.4x | | 500+0.1s=212.5+.11s | | 9/x=6/17 | | 4x2-115x+375=0 | | 2x^2•5x+5=0 | | 25=0.4x | | 9x-47=2x-11 | | 5x+2x=6x+6 | | 6x+9-8x=16-18x+16x-7 | | 3^(m+2)-83=25-3^(m=1) | | (3x-1)/4=-(5/11) | | 1/3d-22/3-71/2d-71/2=7/12 | | 7v-2=4(2v+4) |