If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(x+22)(x)=90
We move all terms to the left:
(x+22)(x)-(90)=0
We multiply parentheses
x^2+22x-90=0
a = 1; b = 22; c = -90;
Δ = b2-4ac
Δ = 222-4·1·(-90)
Δ = 844
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{844}=\sqrt{4*211}=\sqrt{4}*\sqrt{211}=2\sqrt{211}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(22)-2\sqrt{211}}{2*1}=\frac{-22-2\sqrt{211}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(22)+2\sqrt{211}}{2*1}=\frac{-22+2\sqrt{211}}{2} $
| 2y-15=20 | | n^2=-12n-32 | | 3(x-5)=1+5(x-6 | | 3{x-1}=2x-3+3x | | 371=-a+7(8a-2) | | 3x²-4=11x | | a/5-3=10 | | 1/6d+2/3=1/4(d−1/2) | | 8x-2-4x=6+2x | | -10-7x=39 | | y=5+3(3)=11 | | 5/2x+1-x=9/4-x | | x/30=-50 | | 0.06(4t-2)=0.24(t+4)-1.08 | | 0.30x-140=x | | 6x+1=−23 | | y=5+3(3) | | 8(4m+2)+5m=238 | | x+3x+2+x+2=45 | | N+5(n+2)=26+4N | | 9q-8q=15 | | 2. (2b-2)+2b=1325 | | 338+4x=45.5+2.5x | | 3x=6=8x+31 | | 0.02(y-3)+0.14=0.06y-0.5 | | 8r-4(r+2)=3(3r-4)-11 | | (V-2)^2=2v^2-3v-8 | | 130+110+x=360 | | 9x2-26x-3= | | –17b+13b−–3b−–12=–4 | | 7+2d=23 | | 7x-8-4(x+1)=8x+6 |