(x+25)(x+50)=1650

Simple and best practice solution for (x+25)(x+50)=1650 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (x+25)(x+50)=1650 equation:



(x+25)(x+50)=1650
We move all terms to the left:
(x+25)(x+50)-(1650)=0
We multiply parentheses ..
(+x^2+50x+25x+1250)-1650=0
We get rid of parentheses
x^2+50x+25x+1250-1650=0
We add all the numbers together, and all the variables
x^2+75x-400=0
a = 1; b = 75; c = -400;
Δ = b2-4ac
Δ = 752-4·1·(-400)
Δ = 7225
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{7225}=85$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(75)-85}{2*1}=\frac{-160}{2} =-80 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(75)+85}{2*1}=\frac{10}{2} =5 $

See similar equations:

| 10x+136=-8-2 | | -870=30n | | 2(3x=9)=54 | | 15=3/4x+3 | | x^2+3=6x^2 | | r/2−2=1 | | 5r+3(r+1)=0 | | 6z-9=21 | | 70=3(v+8)+5(v-2) | | 10c-10=20 | | 4(3)^x+6=42 | | 2=-4x^2+16x | | 3(p−15)+5=17 | | 10z+9=79 | | K9x)=3x^2-22x-80 | | 3^2x+4=1000 | | 6h-2h=4^2 | | -4=-4(p-4)+6(p-2) | | 8+9+x=31-12 | | -27b=756 | | 100(0.6^x)=600 | | x+52=4x+25 | | 5+w/5=-10 | | 3−4x=-12 | | 10^x=109 | | 4x(7x-11)=0 | | x+52=4x25 | | 41=x+7x+1 | | 10^5x=75 | | -4-5(8v-3)=131 | | Y=(5x+7)(2x+10) | | 124=4x+7x+3 |

Equations solver categories