(x+3)(2x-3)=90

Simple and best practice solution for (x+3)(2x-3)=90 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (x+3)(2x-3)=90 equation:



(x+3)(2x-3)=90
We move all terms to the left:
(x+3)(2x-3)-(90)=0
We multiply parentheses ..
(+2x^2-3x+6x-9)-90=0
We get rid of parentheses
2x^2-3x+6x-9-90=0
We add all the numbers together, and all the variables
2x^2+3x-99=0
a = 2; b = 3; c = -99;
Δ = b2-4ac
Δ = 32-4·2·(-99)
Δ = 801
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{801}=\sqrt{9*89}=\sqrt{9}*\sqrt{89}=3\sqrt{89}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(3)-3\sqrt{89}}{2*2}=\frac{-3-3\sqrt{89}}{4} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(3)+3\sqrt{89}}{2*2}=\frac{-3+3\sqrt{89}}{4} $

See similar equations:

| -6+6x=84 | | (5x)+(x)+(4x)=180 | | 2x²+2x=3x+10 | | 4^{p+2}=64 | | 1+n/9=3 | | -0.5(4x-6)=8=13 | | 236,8x=990,7-x | | 1/2x)+(x+30)=180 | | 17=5w+63 | | -18n=-270 | | −3x=2 | | -1/2x-8=x-4 | | 7/x=42/9 | | –9j+6=–8j | | 5z-3.2=8z+2.5 | | 7+2n=-3;5 | | 4(2x-7)=8x−3 | | 1/4=h+3/4 | | 91x–49x=33+37x | | 4k(4k)=-12 | | 5x-(x+3)=1/3(9x-18)-5 | | 5n-18=13;-6 | | 1+1/2x=12 | | 1/4(5x+6)+3=2 | | 3x–4=-x+3 | | 5=5x1 | | 150=e+36 | | 17=-x+49 | | 18x^2-9=-21x | | -129=-5-4(-4n+7) | | 8x=6+1x | | p+23=30 |

Equations solver categories