(x+3)(2x-5)=(x+3)(x-4)

Simple and best practice solution for (x+3)(2x-5)=(x+3)(x-4) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (x+3)(2x-5)=(x+3)(x-4) equation:



(x+3)(2x-5)=(x+3)(x-4)
We move all terms to the left:
(x+3)(2x-5)-((x+3)(x-4))=0
We multiply parentheses ..
(+2x^2-5x+6x-15)-((x+3)(x-4))=0
We calculate terms in parentheses: -((x+3)(x-4)), so:
(x+3)(x-4)
We multiply parentheses ..
(+x^2-4x+3x-12)
We get rid of parentheses
x^2-4x+3x-12
We add all the numbers together, and all the variables
x^2-1x-12
Back to the equation:
-(x^2-1x-12)
We get rid of parentheses
2x^2-x^2-5x+6x+1x-15+12=0
We add all the numbers together, and all the variables
x^2+2x-3=0
a = 1; b = 2; c = -3;
Δ = b2-4ac
Δ = 22-4·1·(-3)
Δ = 16
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{16}=4$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(2)-4}{2*1}=\frac{-6}{2} =-3 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(2)+4}{2*1}=\frac{2}{2} =1 $

See similar equations:

| 20x=13-4 | | 1.1x+14.4=3.3x-1 | | x^+13x-80=0 | | x+x=14=x^2+x^2=100 | | 3x-4=0-(8-3x) | | (3x-8)+x=20 | | 5(x-5)=2(x-4) | | (x-8)(2x15)=0 | | 4-3x=5x+2 | | 2x+4)(x+4)=70 | | 4/3x+1=10 | | (x-7)+(2x-7)=x | | 2/3(x−6)=2 | | 42/15=2x | | 5/8x−2/8x=9 | | 5/8x−2/x=9 | | 3.1x+0.9x=8 | | 11/2b-41/2=11/2+3/4b | | X^3+8=27x | | 3x^2-5x+2-6x=2 | | 8−(4−8x)=4x+2 | | 2a−9=4(3a+1)−6 | | 0.05(11−x)+0.1x=0.88 | | 0.22(x+8)=0.2x+6.5 | | (x+4)+(3-x)=0 | | 4x-10x-60=0 | | z/7+5=-31 | | 7a−(3a−3)=11 | | 2-n-3=30 | | 3x+2(x+4)=5(x+1) | | 8=10/m | | 4=15/10-2n |

Equations solver categories