If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(x+3)(x-3)=60/40
We move all terms to the left:
(x+3)(x-3)-(60/40)=0
We add all the numbers together, and all the variables
(x+3)(x-3)-(+60/40)=0
We use the square of the difference formula
x^2-9-(+60/40)=0
We get rid of parentheses
x^2-9-60/40=0
We multiply all the terms by the denominator
x^2*40-60-9*40=0
We add all the numbers together, and all the variables
x^2*40-420=0
Wy multiply elements
40x^2-420=0
a = 40; b = 0; c = -420;
Δ = b2-4ac
Δ = 02-4·40·(-420)
Δ = 67200
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{67200}=\sqrt{1600*42}=\sqrt{1600}*\sqrt{42}=40\sqrt{42}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-40\sqrt{42}}{2*40}=\frac{0-40\sqrt{42}}{80} =-\frac{40\sqrt{42}}{80} =-\frac{\sqrt{42}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+40\sqrt{42}}{2*40}=\frac{0+40\sqrt{42}}{80} =\frac{40\sqrt{42}}{80} =\frac{\sqrt{42}}{2} $
| 19-2m=1 | | 12-6x=-8+7+7x | | -4x+8=-2x-2 | | 20d^2=245 | | 12x=-8=40 | | -5(x+1)=4(x+10)= | | 19–2m=1 | | -3x+5x+6=-2 | | -15(3-p)=5(2p-21) | | 36+t=55 | | 18q^2+84q+98=0 | | x/5+1/3=4/3 | | 4.3t-2.1t-2.3=8.7 | | -3(2y-1)+6=-15 | | 26=8n-10-2n | | 24y^2-78y-72=0 | | 9h+4=67h= | | 25x=1040 | | 15+6m=45 | | 58j=-28-4j^2 | | 2(2b-5b)-9=-3 | | 2/3x-1=9-1/6x= | | 12=3f | | 40k^2-392k-80=0 | | x+12=35-(x+12) | | 1+5w+5-7w=22 | | 9=1/3m+15 | | 180=3x-82+166 | | 6h^2+68h+22=0 | | 5x+2+10x-3+7x-11+8x-19+13x-31=540 | | 1-8n=-7n | | 3x+47/5=28 |