(x+3)(x-4)=(x-1)

Simple and best practice solution for (x+3)(x-4)=(x-1) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (x+3)(x-4)=(x-1) equation:



(x+3)(x-4)=(x-1)
We move all terms to the left:
(x+3)(x-4)-((x-1))=0
We multiply parentheses ..
(+x^2-4x+3x-12)-((x-1))=0
We calculate terms in parentheses: -((x-1)), so:
(x-1)
We get rid of parentheses
x-1
Back to the equation:
-(x-1)
We get rid of parentheses
x^2-4x+3x-x-12+1=0
We add all the numbers together, and all the variables
x^2-2x-11=0
a = 1; b = -2; c = -11;
Δ = b2-4ac
Δ = -22-4·1·(-11)
Δ = 48
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{48}=\sqrt{16*3}=\sqrt{16}*\sqrt{3}=4\sqrt{3}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-2)-4\sqrt{3}}{2*1}=\frac{2-4\sqrt{3}}{2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-2)+4\sqrt{3}}{2*1}=\frac{2+4\sqrt{3}}{2} $

See similar equations:

| (5w-6)(7-w)=0 | | (5w-6)(7-w)5w-6=0 | | .0003x^-2+.1x-43=0 | | .0003x^2+.1x-43=0 | | 180=90+7x+1+9x-7 | | -6m+3=3 | | 5x=5-6x | | .0003x^-2+.1x-42=0 | | -148=4-8n | | 180+.25x=342.50 | | .0003x^2+.1x-42=0 | | 14x-56/15=56 | | 4x^2-20+23=0 | | 5(6x+4)=30x-7 | | 45=x+2x | | 15s^2=−13s−2 | | 8x+3=8x-10 | | (4x+2)*(2x^2+1)=0 | | 5+6z=8z+15 | | 6x^2−9x=0 | | 17=-2(8k+3) | | R÷4-3=7r= | | 25^x-4=5^3x+1 | | 4(3b-4)=9-b | | 2x-5(x-3)=-7+5x-42 | | 2/3x+1/2=21/2 | | 2x/48=3/2 | | ​5​​3​​x+​10​​7​​=​10​​19​​ | | 34x+12=179 | | 180=90+33k-9 | | 3=4(4+2x) | | 3/5=24/x+25 |

Equations solver categories