(x+3)(x-5)=2x(x+4)

Simple and best practice solution for (x+3)(x-5)=2x(x+4) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (x+3)(x-5)=2x(x+4) equation:



(x+3)(x-5)=2x(x+4)
We move all terms to the left:
(x+3)(x-5)-(2x(x+4))=0
We multiply parentheses ..
(+x^2-5x+3x-15)-(2x(x+4))=0
We calculate terms in parentheses: -(2x(x+4)), so:
2x(x+4)
We multiply parentheses
2x^2+8x
Back to the equation:
-(2x^2+8x)
We get rid of parentheses
x^2-2x^2-5x+3x-8x-15=0
We add all the numbers together, and all the variables
-1x^2-10x-15=0
a = -1; b = -10; c = -15;
Δ = b2-4ac
Δ = -102-4·(-1)·(-15)
Δ = 40
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{40}=\sqrt{4*10}=\sqrt{4}*\sqrt{10}=2\sqrt{10}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-10)-2\sqrt{10}}{2*-1}=\frac{10-2\sqrt{10}}{-2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-10)+2\sqrt{10}}{2*-1}=\frac{10+2\sqrt{10}}{-2} $

See similar equations:

| 7/2p+7/3=9/2+5/2p | | A=8/5(h-68) | | 11x+8=4x-8+100 | | Z=3+4a | | 0=188-16t^2 | | -2.5(x-4)=32.5 | | -3(1-11)+(8x-15)=187 | | X/3-y=14 | | 4t^2+35t-9=0 | | 7(4x-4)-3(5x-11)=3(4x+5)-1 | | ⅜f+½=6(1/16f-3) | | 4x-63=-7x+36 | | 20+3s=s | | 4*t^2+35*t−9=0 | | -5(2v+3)=-19-8v | | 5(x-4)+18=43 | | v/2+6=-2 | | ⅓+2/3m=2/3m-2/3 | | 4t2+35t−9=0 | | 4(y-6)+8=6y-4 | | 1/4(t-5)=1/3(t+2) | | 4K=-10+2k | | -45y=48 | | n+2=44+12 | | -66=6.6f | | 5(m+5)=28 | | 4+8p-1=6p+33-4p | | 4.1=1.9-0.4y | | 7/2x-7=-4 | | 3-4(9d+12)=-9(3d-12) | | 6z=33 | | y-8.9=7 |

Equations solver categories