(x+3)*(x+2)+x(x+3)=x(x+1)

Simple and best practice solution for (x+3)*(x+2)+x(x+3)=x(x+1) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (x+3)*(x+2)+x(x+3)=x(x+1) equation:



(x+3)(x+2)+x(x+3)=x(x+1)
We move all terms to the left:
(x+3)(x+2)+x(x+3)-(x(x+1))=0
We multiply parentheses
x^2+(x+3)(x+2)+3x-(x(x+1))=0
We multiply parentheses ..
x^2+(+x^2+2x+3x+6)+3x-(x(x+1))=0
We calculate terms in parentheses: -(x(x+1)), so:
x(x+1)
We multiply parentheses
x^2+x
Back to the equation:
-(x^2+x)
We get rid of parentheses
x^2+x^2-x^2+2x+3x+3x-x+6=0
We add all the numbers together, and all the variables
x^2+7x+6=0
a = 1; b = 7; c = +6;
Δ = b2-4ac
Δ = 72-4·1·6
Δ = 25
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{25}=5$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(7)-5}{2*1}=\frac{-12}{2} =-6 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(7)+5}{2*1}=\frac{-2}{2} =-1 $

See similar equations:

| 6x-7=139 | | 11.3x-10.1x+7=13.24 | | 5y+8=64 | | -11+x/5=6 | | 24-5x6= | | f/15-13=-14 | | -3(8+n)=24 | | 5(x/9)=17+x | | m2+14m+94=-2 | | 2x+(x+5)=50 | | 5/7x-8=2/13x+5 | | m-3(m-5)=5 | | k/5+15=14 | | (2x+15)+(6x+2)=180 | | 1+x/4=7 | | (x+5)+2x=50 | | -2x+5x-9=3x(x-4)-5 | | 15+2x=49 | | 2(4u-6)=70 | | 4x-1=3x^2+4×-4 | | 8x+19=-15 | | 2x+(x-3)=180 | | -2+x/13=1 | | (3x-1)+(x+7)=90 | | -2+x/9=4 | | -5=2v+5 | | 5/7x-8=2/13+5 | | 4(3)^x-2+3=159 | | 35y-22y=9y+76 | | 28-16=4(x-9) | | 5^2y+1=25^3y | | 16y+3y=82+21y |

Equations solver categories