(x+3)+(x-4)=(x-2x)(x+5)+6

Simple and best practice solution for (x+3)+(x-4)=(x-2x)(x+5)+6 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (x+3)+(x-4)=(x-2x)(x+5)+6 equation:



(x+3)+(x-4)=(x-2x)(x+5)+6
We move all terms to the left:
(x+3)+(x-4)-((x-2x)(x+5)+6)=0
We add all the numbers together, and all the variables
(x+3)+(x-4)-((-1x)(x+5)+6)=0
We get rid of parentheses
x+x-((-1x)(x+5)+6)+3-4=0
We multiply parentheses ..
-((-1x^2-5x)+6)+x+x+3-4=0
We calculate terms in parentheses: -((-1x^2-5x)+6), so:
(-1x^2-5x)+6
We get rid of parentheses
-1x^2-5x+6
Back to the equation:
-(-1x^2-5x+6)
We add all the numbers together, and all the variables
-(-1x^2-5x+6)+2x-1=0
We get rid of parentheses
1x^2+5x+2x-6-1=0
We add all the numbers together, and all the variables
x^2+7x-7=0
a = 1; b = 7; c = -7;
Δ = b2-4ac
Δ = 72-4·1·(-7)
Δ = 77
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(7)-\sqrt{77}}{2*1}=\frac{-7-\sqrt{77}}{2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(7)+\sqrt{77}}{2*1}=\frac{-7+\sqrt{77}}{2} $

See similar equations:

| 2x+68+90=180 | | 5n*5n=25n | | 4x+13+x=180 | | y-y/10=326 | | 2x2−8=0 | | x+2x+75=180 | | h/17=17 | | 0.7p+4.6=7.3-1.2p | | 3{x+1}+2{x+4}=4x+15 | | (x+3)+(x-4)=x-2x-10+6 | | k-134=250 | | 175+160+x=360 | | n^2-6n-60=-5 | | x^2+20x+54=-10 | | 1x+1.5x+2x=7 | | ∠A=5x+34∠B=2x+76 | | r89+6=47*78 | | ∠A=5x+34∘∠B=2x+76∘ | | x2-14x+18=-6 | | 4n-10=110 | | 4/3y+1/2=6 | | 3u+16=37 | | 4w^2+2w-24=0 | | 4x^2-18=-19 | | 6x^2-71x-120=0 | | 4^x−11=3.2x+13 | | w/2-8=2 | | x^2-50x=12 | | 13x-4/2=63 | | 2.7x=2.9 | | 4(x-3)=2(x+2 | | (x-20)+20+20=90 |

Equations solver categories