(x+3)+1/2x=24

Simple and best practice solution for (x+3)+1/2x=24 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (x+3)+1/2x=24 equation:



(x+3)+1/2x=24
We move all terms to the left:
(x+3)+1/2x-(24)=0
Domain of the equation: 2x!=0
x!=0/2
x!=0
x∈R
We get rid of parentheses
x+1/2x+3-24=0
We multiply all the terms by the denominator
x*2x+3*2x-24*2x+1=0
Wy multiply elements
2x^2+6x-48x+1=0
We add all the numbers together, and all the variables
2x^2-42x+1=0
a = 2; b = -42; c = +1;
Δ = b2-4ac
Δ = -422-4·2·1
Δ = 1756
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{1756}=\sqrt{4*439}=\sqrt{4}*\sqrt{439}=2\sqrt{439}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-42)-2\sqrt{439}}{2*2}=\frac{42-2\sqrt{439}}{4} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-42)+2\sqrt{439}}{2*2}=\frac{42+2\sqrt{439}}{4} $

See similar equations:

| -6+2a=+1+2a | | 144÷u=15 | | r-30=160 | | 9=2m-35 | | -3(1+n)-2n=-6n(n-2) | | 7w+9-9=8w-6-9 | | 20=t/20 | | 3x-6x+2=8x+29-5x | | x+25+94+x=180 | | j-j+-3j=9 | | p-339=-111 | | 49=w+6w | | x–12=–3x+1 | | -10x+4=30 | | (5x+8)(7x-16)=180 | | 2(2x+5)=8x+9-4x+1 | | r-328=152 | | -16=4+5w | | 6=h+-698 | | (4x+23)+(10x-1)+78=180 | | -6x+9=2-5(x-1) | | 2/3(6x-3)=2x-5 | | x-4x-21=20 | | s^2+6s=27 | | t-62=304 | | 2(x+3)+2(1/2x)=24 | | y=25,000(0.85)5 | | x+48+50=180 | | g+524=592 | | w-967=-543 | | -3(-7-6x)=-69 | | u+49=53 |

Equations solver categories