(x+3)+x+1/2x=33

Simple and best practice solution for (x+3)+x+1/2x=33 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (x+3)+x+1/2x=33 equation:



(x+3)+x+1/2x=33
We move all terms to the left:
(x+3)+x+1/2x-(33)=0
Domain of the equation: 2x!=0
x!=0/2
x!=0
x∈R
We add all the numbers together, and all the variables
x+(x+3)+1/2x-33=0
We get rid of parentheses
x+x+1/2x+3-33=0
We multiply all the terms by the denominator
x*2x+x*2x+3*2x-33*2x+1=0
Wy multiply elements
2x^2+2x^2+6x-66x+1=0
We add all the numbers together, and all the variables
4x^2-60x+1=0
a = 4; b = -60; c = +1;
Δ = b2-4ac
Δ = -602-4·4·1
Δ = 3584
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{3584}=\sqrt{256*14}=\sqrt{256}*\sqrt{14}=16\sqrt{14}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-60)-16\sqrt{14}}{2*4}=\frac{60-16\sqrt{14}}{8} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-60)+16\sqrt{14}}{2*4}=\frac{60+16\sqrt{14}}{8} $

See similar equations:

| -188=-4+8(4x+5) | | 109+8x-1+13x-2+10x+6=540 | | 3x+6(×-5)=-48 | | -87=-3-6(3k+8) | | -7+4-3x=-2x-12 | | 2x/3=4x-11 | | 3y+1=235 | | t=64-6(3) | | 106=2-2(6v-4) | | 135+5x-4+7x-64+120+6x-8+4x+15+3x+31=700 | | 10+4=2x | | 6(2t+2)-1=3 | | 36=3u+6 | | −r/4−2=3 | | 2(3k+1)+2=28 | | 6v=–12+9-3v | | s.10=7 | | 3y+1=209 | | -4(3t-2)=24 | | 32=2r+6 | | (3x+10)=(x-2) | | –3h=–9 | | 30+64=x | | 7/25=7/x | | -32–8m=-4(2m+8) | | 209=3y+1 | | 1/2-(1/3x)=-4 | | (-8x-4)=140 | | 22=-6n+1 | | 2(5c+8=) | | 5^(2x+5)=2(3x+7) | | 0.3=0.5f=0.7 |

Equations solver categories