(x+3)2+(x)2=117

Simple and best practice solution for (x+3)2+(x)2=117 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (x+3)2+(x)2=117 equation:



(x+3)2+(x)2=117
We move all terms to the left:
(x+3)2+(x)2-(117)=0
We add all the numbers together, and all the variables
x^2+(x+3)2-117=0
We multiply parentheses
x^2+2x+6-117=0
We add all the numbers together, and all the variables
x^2+2x-111=0
a = 1; b = 2; c = -111;
Δ = b2-4ac
Δ = 22-4·1·(-111)
Δ = 448
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{448}=\sqrt{64*7}=\sqrt{64}*\sqrt{7}=8\sqrt{7}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(2)-8\sqrt{7}}{2*1}=\frac{-2-8\sqrt{7}}{2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(2)+8\sqrt{7}}{2*1}=\frac{-2+8\sqrt{7}}{2} $

See similar equations:

| x-2=37 | | 10=4(6f+2)+9 | | 35•14=x | | 4y=64+8 | | 5^x=1125 | | 34=35-x | | d^2=14d+49=0 | | w+8/w^2-36=0 | | 8s+s+3s-8s=20 | | 6y=78+96 | | x^2-1.2x=1.44 | | F(x)=-4x+10 | | 4/1​=12/y​ | | 1/2(4x+16=20 | | 2p-p+p+4p-5p=9 | | 5+5c=21 | | 2=8/f​ | | 4(5x-4)=4x+-18 | | 7n+4=9n-20 | | 2x+23=7x-40 | | x/14+8=7 | | 12x+85+20x-10=180 | | -5x^2+120=-40 | | x-(x•0.22)=776.1 | | 60=5(n+2) | | u=2(2u+1)-4 | | 585=35x-6 | | x-10+4x-10+x+2=180 | | (9x-18)=(10x-18) | | 5(r+19)=17 | | x+4+32=90 | | r+19/5=17 |

Equations solver categories