(x+3)2-1=(x+4)(x+2)

Simple and best practice solution for (x+3)2-1=(x+4)(x+2) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (x+3)2-1=(x+4)(x+2) equation:



(x+3)2-1=(x+4)(x+2)
We move all terms to the left:
(x+3)2-1-((x+4)(x+2))=0
We multiply parentheses
2x-((x+4)(x+2))+6-1=0
We multiply parentheses ..
-((+x^2+2x+4x+8))+2x+6-1=0
We calculate terms in parentheses: -((+x^2+2x+4x+8)), so:
(+x^2+2x+4x+8)
We get rid of parentheses
x^2+2x+4x+8
We add all the numbers together, and all the variables
x^2+6x+8
Back to the equation:
-(x^2+6x+8)
We add all the numbers together, and all the variables
2x-(x^2+6x+8)+5=0
We get rid of parentheses
-x^2+2x-6x-8+5=0
We add all the numbers together, and all the variables
-1x^2-4x-3=0
a = -1; b = -4; c = -3;
Δ = b2-4ac
Δ = -42-4·(-1)·(-3)
Δ = 4
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{4}=2$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-4)-2}{2*-1}=\frac{2}{-2} =-1 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-4)+2}{2*-1}=\frac{6}{-2} =-3 $

See similar equations:

| 6m+4=120 | | 3=-8+x/4 | | 14=c+8+7 | | 3x2−27=0 | | 1/4x+8=x | | 3x+10=5x-25 | | 2x+16=3x-7 | | -3(11-3x)=24 | | a+-2(1/3)=15(1/3) | | 3x-31=14 | | 25-t6=(5+t3)(5-t3) | | 2n+1/10n=1+1/6 | | 8^x+4=16 | | 2(3x-4)=2x+ | | 2x-43=23 | | 6(3y-12)+2y=60 | | a+-21/3=151/3 | | x/5+10.1=-2.4 | | 28=7+11+c | | 9+3y=13 | | 0.04/x=0.03 | | (-5y+5)-(-4y-8)=-5 | | 1/2(4x−12)=5 | | 6y=3=51 | | 3(x+3)=4(3x-9) | | 3x-2+6x-5=180 | | -3y+9=24 | | 3(w+3)=-3(3w-1)+3w | | 54*m+36+25=159 | | 45=1/2h(10+5) | | 8j+5j-8j-4j=15 | | 6w+4+4w=64 |

Equations solver categories