(x+30)(2x-60)=180

Simple and best practice solution for (x+30)(2x-60)=180 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (x+30)(2x-60)=180 equation:



(x+30)(2x-60)=180
We move all terms to the left:
(x+30)(2x-60)-(180)=0
We multiply parentheses ..
(+2x^2-60x+60x-1800)-180=0
We get rid of parentheses
2x^2-60x+60x-1800-180=0
We add all the numbers together, and all the variables
2x^2-1980=0
a = 2; b = 0; c = -1980;
Δ = b2-4ac
Δ = 02-4·2·(-1980)
Δ = 15840
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{15840}=\sqrt{144*110}=\sqrt{144}*\sqrt{110}=12\sqrt{110}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-12\sqrt{110}}{2*2}=\frac{0-12\sqrt{110}}{4} =-\frac{12\sqrt{110}}{4} =-3\sqrt{110} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+12\sqrt{110}}{2*2}=\frac{0+12\sqrt{110}}{4} =\frac{12\sqrt{110}}{4} =3\sqrt{110} $

See similar equations:

| -5×+2y=9 | | 5b+6b+11=99 | | 1÷x=-5÷60 | | 8y+11-23=4 | | 12+x=19-7 | | 8x+7=3×5 | | 24=2x-2 | | 56-6=n | | 120×2+n=270 | | x–27=14 | | 4=x+30=2=2x+15 | | 6/g=16 | | x-(0.25*x)=4.5 | | (2–x)(3x+4)=0 | | 100+x+x=80 | | 5-2a=6-8 | | (3g−10)/4=5 | | 3t-7=t+15 | | X+x÷6=49 | | 3x+8–5x=5–2x | | 3x+45=60° | | 3(1-x)+2=2-7 | | 2p=9=21 | | m=16=82 | | 3n-1/2=12 | | 3+1/2n=12 | | 2x+3=15+1 | | 2b-16=6 | | 1500x54000=2500x+45000 | | 3n÷6=7 | | 12+2p=-4 | | -x+6+5x-10=4x+15-9x-1 |

Equations solver categories