If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(x+32)(x)=90
We move all terms to the left:
(x+32)(x)-(90)=0
We multiply parentheses
x^2+32x-90=0
a = 1; b = 32; c = -90;
Δ = b2-4ac
Δ = 322-4·1·(-90)
Δ = 1384
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1384}=\sqrt{4*346}=\sqrt{4}*\sqrt{346}=2\sqrt{346}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(32)-2\sqrt{346}}{2*1}=\frac{-32-2\sqrt{346}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(32)+2\sqrt{346}}{2*1}=\frac{-32+2\sqrt{346}}{2} $
| 20a-19a=4 | | (10x-16)=5 | | 17=c/4+14 | | -6=3-9p | | e/7+13=16 | | x+73.5=(35.5)+73.5 | | (e+1)/9=(e+2)/10 | | 3.3(3.2x-0.9)+2.6x=49.67 | | 2(5u-5)-19u=9(-u+15) | | 4x+x+3-3(x-2)=-84 | | 3x+73.5-73.5=180-73.5 | | 5(2x-3)-x=4(x+12)+15 | | 2(5u-5)-19u=9(-u+15 | | 4(-4+q)=-(16-4q) | | 12-16r=-2(8r-6) | | -2f-7(-18f-18)=-2f | | 14w+10=8(4w-19) | | f(×)=-5×+10 | | -11=u+28/u | | 13-5n=8-2(7n-7) | | -3(20+7s)=-2(3s-15) | | -3(a+3)-9a=-6 | | (x-5)/15=7/3 | | 2(-u+1)=2-2u | | 14-18r+3=-18r+15 | | 2x+14-14=50-14 | | -2(-4+a)=16 | | 3v2-11v=4 | | -2(-6x+3)-3x=-18+7x | | 6s-20s+6=6-14s | | 144=8m | | 180=15x+x |