(x+32)=2x(5x+3)

Simple and best practice solution for (x+32)=2x(5x+3) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (x+32)=2x(5x+3) equation:



(x+32)=2x(5x+3)
We move all terms to the left:
(x+32)-(2x(5x+3))=0
We get rid of parentheses
x-(2x(5x+3))+32=0
We calculate terms in parentheses: -(2x(5x+3)), so:
2x(5x+3)
We multiply parentheses
10x^2+6x
Back to the equation:
-(10x^2+6x)
We get rid of parentheses
-10x^2+x-6x+32=0
We add all the numbers together, and all the variables
-10x^2-5x+32=0
a = -10; b = -5; c = +32;
Δ = b2-4ac
Δ = -52-4·(-10)·32
Δ = 1305
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{1305}=\sqrt{9*145}=\sqrt{9}*\sqrt{145}=3\sqrt{145}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-5)-3\sqrt{145}}{2*-10}=\frac{5-3\sqrt{145}}{-20} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-5)+3\sqrt{145}}{2*-10}=\frac{5+3\sqrt{145}}{-20} $

See similar equations:

| Y/5+y/2=8/8 | | 2x×3=2x×2x×2x | | -1/4-4p=3 | | 11.9+3a=-16.9 | | 25(5)(3)+5g=106 | | 40=2-2x | | -2v+9=24 | | 3v=35-4v | | 9+0.02x=0.05x | | m=4/1 | | x+129+1x+69=180 | | 4(v-4)-6v=-24 | | 6+2(2x-5)=-7(2x-2)+4x | | x-4*0=18 | | 0.8y+0.9(30-y)=24.8 | | 10-4x=6x+10-10x | | -2+16x+14x+12=180 | | 4(x÷4)=44 | | 2x+23+3x-3=46-3x+38 | | 40x+20=40x+10 | | 1/3w=-3 | | 9(2w-2)=7(3w+2) | | 6-3x=5x+4 | | 40=15+x | | 3(2n+2)=5(n+2)-3 | | -30-2r=2(1-3r) | | 7(u-4)-6=-5(-2u+4)-7u | | (-3/2x-5/3)4/3x=0 | | (x+6)^(2)=-2x | | 3(v-7)=-5v+27 | | 6-3x=15x+4 | | 3j-15=4j |

Equations solver categories