(x+35)/(x)-(x-2)/(3)=1

Simple and best practice solution for (x+35)/(x)-(x-2)/(3)=1 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (x+35)/(x)-(x-2)/(3)=1 equation:



(x+35)/(x)-(x-2)/(3)=1
We move all terms to the left:
(x+35)/(x)-(x-2)/(3)-(1)=0
Domain of the equation: x!=0
x∈R
We calculate fractions
(-1x^2+2x)/3x+(3x+105)/3x-1=0
We multiply all the terms by the denominator
(-1x^2+2x)+(3x+105)-1*3x=0
Wy multiply elements
(-1x^2+2x)+(3x+105)-3x=0
We get rid of parentheses
-1x^2+2x+3x-3x+105=0
We add all the numbers together, and all the variables
-1x^2+2x+105=0
a = -1; b = 2; c = +105;
Δ = b2-4ac
Δ = 22-4·(-1)·105
Δ = 424
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{424}=\sqrt{4*106}=\sqrt{4}*\sqrt{106}=2\sqrt{106}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(2)-2\sqrt{106}}{2*-1}=\frac{-2-2\sqrt{106}}{-2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(2)+2\sqrt{106}}{2*-1}=\frac{-2+2\sqrt{106}}{-2} $

See similar equations:

| -8-3x=x+12 | | 2x+5+7x-3=9(x+3 | | 18=2/3w | | x(x-25)=1350 | | 2/3x-43=20 | | 7x-21-14=70 | | 2|2y-1|+5=19 | | -2-9(1+3v)=25 | | c=15+75 | | 3x+18=5x+6 | | 5x+1=+13 | | 7b÷12=42 | | -0.2i=1.6 | | x(x+25)=1350 | | 6q+1=25 | | 1/8(p+24=9 | | f(3)=776 | | 5y=(y+3)-(y-6) | | 4.1x-11.34=6.7 | | (x+35)/(x)+(x-2)/(3)=1 | | 2x^2=16−4x | | 2x+45x=180 | | 7s+11(745-s)=s | | -22=1-3x-5 | | -17-2x=3x+18 | | x^2+25x=1350 | | 250x=1800 | | 8x+5=36^2 | | -261/3+x=10 | | 8x-2=(4+3x) | | 120-(750*x)=0 | | x/x+5=4/9 |

Equations solver categories