If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(x+35)4x=360
We move all terms to the left:
(x+35)4x-(360)=0
We multiply parentheses
4x^2+140x-360=0
a = 4; b = 140; c = -360;
Δ = b2-4ac
Δ = 1402-4·4·(-360)
Δ = 25360
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{25360}=\sqrt{16*1585}=\sqrt{16}*\sqrt{1585}=4\sqrt{1585}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(140)-4\sqrt{1585}}{2*4}=\frac{-140-4\sqrt{1585}}{8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(140)+4\sqrt{1585}}{2*4}=\frac{-140+4\sqrt{1585}}{8} $
| 6x+5(2-3x)=3-2(x-1) | | 4(r-85)=36 | | x/3+17=12 | | 18=x-7;x=25 | | 12^x+4=65 | | 3+6s=4(s-3)=19 | | 5(x-1)+3x=7X+1) | | 3(6x+5)-2=-6(-6x-4)+2x | | 3x-24+2x-6=90 | | .083n=12 | | 8x+2=7x+17 | | 0=-x^2+7x-18 | | 11=5+x/3 | | 10=4x+1=2x+15=10 | | 5x-2(x+4)=1-3(8x-4) | | 27=3(t-59) | | x/2+(x+2)/4=x+1-7 | | 13=q/2+–11 | | (7x-1)/2=(3x-3)/4 | | -2.4=-7m | | 5x-9+5x=-5(-7x+6)-3 | | 3(q-46)=84 | | 4f+13=29 | | 4^2x-1=72 | | 2^x=19/5 | | 32=-3y-5y | | 5(x-3)=2(x-1) | | (3n+24)=(7n-10) | | 3x^2+89=x^2-135 | | x−−4=−6 | | r+5/8=5 | | 33=32x+14 |