(x+36)+(2x+12)+(1/3x+52)=180

Simple and best practice solution for (x+36)+(2x+12)+(1/3x+52)=180 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (x+36)+(2x+12)+(1/3x+52)=180 equation:



(x+36)+(2x+12)+(1/3x+52)=180
We move all terms to the left:
(x+36)+(2x+12)+(1/3x+52)-(180)=0
Domain of the equation: 3x+52)!=0
x∈R
We get rid of parentheses
x+2x+1/3x+36+12+52-180=0
We multiply all the terms by the denominator
x*3x+2x*3x+36*3x+12*3x+52*3x-180*3x+1=0
Wy multiply elements
3x^2+6x^2+108x+36x+156x-540x+1=0
We add all the numbers together, and all the variables
9x^2-240x+1=0
a = 9; b = -240; c = +1;
Δ = b2-4ac
Δ = -2402-4·9·1
Δ = 57564
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{57564}=\sqrt{36*1599}=\sqrt{36}*\sqrt{1599}=6\sqrt{1599}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-240)-6\sqrt{1599}}{2*9}=\frac{240-6\sqrt{1599}}{18} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-240)+6\sqrt{1599}}{2*9}=\frac{240+6\sqrt{1599}}{18} $

See similar equations:

| x3=8125. | | 4x+11+9x=180 | | 4(14+x)=40 | | 9n–7n=5 | | 42=6+9c | | (x)+(x+50)+(180-3x)=180 | | 7-2c=14;-3 | | 7/9=x-3 | | 31.5=x21.7 | | 3x=12/40 | | 3x + 9 = 48 | | 6x-4=31 | | 12x+30=9x+48 | | ((1)/(6))^(3x-1)=36^(x-7) | | 5k=1k-1 | | 27=f–11 | | -p-13=-£p+3(5p-6) | | 12.5x-8.5x=20 | | Y=x+x/3 | | m–30=16 | | m–30=16 | | 5x=4=12x+2-x | | F10=3x-2 | | 89=8c=25 | | 15=d–9 | | 50=10f | | 16=64^x | | 16=64^x | | k–17=20 | | 6v-5/8=7- | | 7x-5=8.5 | | (x+29)-2x=8 |

Equations solver categories