(x+4)(320/x)=188

Simple and best practice solution for (x+4)(320/x)=188 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (x+4)(320/x)=188 equation:



(x+4)(320/x)=188
We move all terms to the left:
(x+4)(320/x)-(188)=0
Domain of the equation: x)!=0
x!=0/1
x!=0
x∈R
We add all the numbers together, and all the variables
(x+4)(+320/x)-188=0
We multiply parentheses ..
(+320x^2+1280x)-188=0
We get rid of parentheses
320x^2+1280x-188=0
a = 320; b = 1280; c = -188;
Δ = b2-4ac
Δ = 12802-4·320·(-188)
Δ = 1879040
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{1879040}=\sqrt{1024*1835}=\sqrt{1024}*\sqrt{1835}=32\sqrt{1835}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1280)-32\sqrt{1835}}{2*320}=\frac{-1280-32\sqrt{1835}}{640} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1280)+32\sqrt{1835}}{2*320}=\frac{-1280+32\sqrt{1835}}{640} $

See similar equations:

| (x/4)+1=-3 | | 5p-4/3p+5=-5/3 | | 6m+8=-22 | | b/3-3+7=12 | | 6x+3(x-2)=10 | | 6x-9=3+12 | | 0.4(x-3)=0.7(6x-5)+1.16 | | 4x+3=-8+2x+21 | | 3w-6+4w=5(2w+3 | | 1/5z-5/6=-4/5z-2/3 | | 2.1x+4.3=−7.7−3.9x | | (4*x+9)/(2*x+8)=5 | | 3-x-3=5 | | 4x+9/2x+8=5 | | 20=−3b−2b | | 2/3(3x+6)=3x-4; | | 23=v+5-7v | | 140=7(6+a) | | 3x-5=0.5; | | 3x^-1=74 | | 1/3(3-w)=1-1/3w | | (4x+9)/(2x+8)=5 | | -2x(6x-15)2/3=-4 | | (20)=2x+3 | | 99+f=-88 | | 1/4x+3=3/4x+1;x= | | -w+4(w+3)=-+2 | | 2/3(6x-15)-2x=-4 | | -5w+13=-17 | | 17=|-5a+4| | | 44=-11b+13 | | -21-n=-104 |

Equations solver categories