(x+4)(3x-2)-(3x-1)(3x+1)=2x(11-3x)

Simple and best practice solution for (x+4)(3x-2)-(3x-1)(3x+1)=2x(11-3x) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (x+4)(3x-2)-(3x-1)(3x+1)=2x(11-3x) equation:



(x+4)(3x-2)-(3x-1)(3x+1)=2x(11-3x)
We move all terms to the left:
(x+4)(3x-2)-(3x-1)(3x+1)-(2x(11-3x))=0
We add all the numbers together, and all the variables
(x+4)(3x-2)-(3x-1)(3x+1)-(2x(-3x+11))=0
We use the square of the difference formula
9x^2+(x+4)(3x-2)-(2x(-3x+11))+1=0
We multiply parentheses ..
9x^2+(+3x^2-2x+12x-8)-(2x(-3x+11))+1=0
We calculate terms in parentheses: -(2x(-3x+11)), so:
2x(-3x+11)
We multiply parentheses
-6x^2+22x
Back to the equation:
-(-6x^2+22x)
We get rid of parentheses
9x^2+3x^2+6x^2-2x+12x-22x-8+1=0
We add all the numbers together, and all the variables
18x^2-12x-7=0
a = 18; b = -12; c = -7;
Δ = b2-4ac
Δ = -122-4·18·(-7)
Δ = 648
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{648}=\sqrt{324*2}=\sqrt{324}*\sqrt{2}=18\sqrt{2}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-12)-18\sqrt{2}}{2*18}=\frac{12-18\sqrt{2}}{36} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-12)+18\sqrt{2}}{2*18}=\frac{12+18\sqrt{2}}{36} $

See similar equations:

| 4x-1/2=x+7 | | 3/x+2=8/3-x | | x^2=3/5 | | x+5/8=9/10 | | 8x–22=-78 | | x/5+1/4=x/2 | | 45=y-8 | | |5x-1|=6 | | 3^(x)+2*3^(x-1)=45 | | (x-1)^3=0 | | 3yy=-1 | | (2x+5)^2=4x^2+25 | | 3x2+13x+10=0 | | 6x2-2x-8=0 | | 3x2+13x+-10=0 | | a²=64 | | 7x^2-1-(2x+1)(3x-2)=x^2 | | 8x+3=10x-4 | | 10(x+2)=6x+15 | | 3(2x-10)=4x-80 | | 7x-19=5x+49 | | 6x=2x=40 | | q/4+2=-1 | | 224x=0 | | x^2+30x+10800=0 | | X2+6x+10=0 | | P^2+6p-1=8 | | x2+6x+16=0 | | 5+u4=36 | | x^2=(6x-2)÷9 | | 4^(x-3)=4^x-252 | | P2+6p-1=8 |

Equations solver categories