(x+4)(x+1)=(x+2)

Simple and best practice solution for (x+4)(x+1)=(x+2) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (x+4)(x+1)=(x+2) equation:



(x+4)(x+1)=(x+2)
We move all terms to the left:
(x+4)(x+1)-((x+2))=0
We multiply parentheses ..
(+x^2+x+4x+4)-((x+2))=0
We calculate terms in parentheses: -((x+2)), so:
(x+2)
We get rid of parentheses
x+2
Back to the equation:
-(x+2)
We get rid of parentheses
x^2+x+4x-x+4-2=0
We add all the numbers together, and all the variables
x^2+4x+2=0
a = 1; b = 4; c = +2;
Δ = b2-4ac
Δ = 42-4·1·2
Δ = 8
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{8}=\sqrt{4*2}=\sqrt{4}*\sqrt{2}=2\sqrt{2}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-2\sqrt{2}}{2*1}=\frac{-4-2\sqrt{2}}{2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+2\sqrt{2}}{2*1}=\frac{-4+2\sqrt{2}}{2} $

See similar equations:

| 8(4x-3)(6x+5)=0 | | 6z=(1/2z-8) | | x+40+50+50=180 | | V^2+8v+16=114 | | x^2​​+13x+31=0 | | x​2​​+13x+31=0 | | (x+4)(x+1)=(x+2)|2 | | 10*a=3500 | | 483+18y=262+21y | | 2/8=2x/8 | | -4(-6x-3)-3=9 | | 21x-5=18x | | 10+16=-22+10x | | 95=(f-32)/1.8 | | (x+3)(x+4)=(x-2)(x+1) | | X-8a=6 | | 6(5/2y+5)-15y=30 | | 1/4=x=7/4 | | -3(6x+4)+3(x-10)=4x+11x | | -16t^2+40t-16=0 | | 3=2/7x+7=8 | | 3*c=30 | | X2+8x-2=0 | | 16x-1=13x-16 | | v^2+8v-101=-9 | | 9x+2-7x=7x+6 | | -11+s=3 | | 5/p=35/8 | | (x+5)(x+3)(x-7)=0 | | 0.5^x=9 | | (n+4)(n+7)=0 | | 40+(6x+15)=180 |

Equations solver categories