(x+4)(x+4+3x)=152

Simple and best practice solution for (x+4)(x+4+3x)=152 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (x+4)(x+4+3x)=152 equation:



(x+4)(x+4+3x)=152
We move all terms to the left:
(x+4)(x+4+3x)-(152)=0
We add all the numbers together, and all the variables
(x+4)(4x+4)-152=0
We multiply parentheses ..
(+4x^2+4x+16x+16)-152=0
We get rid of parentheses
4x^2+4x+16x+16-152=0
We add all the numbers together, and all the variables
4x^2+20x-136=0
a = 4; b = 20; c = -136;
Δ = b2-4ac
Δ = 202-4·4·(-136)
Δ = 2576
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{2576}=\sqrt{16*161}=\sqrt{16}*\sqrt{161}=4\sqrt{161}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(20)-4\sqrt{161}}{2*4}=\frac{-20-4\sqrt{161}}{8} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(20)+4\sqrt{161}}{2*4}=\frac{-20+4\sqrt{161}}{8} $

See similar equations:

| 5d-12=7d | | 7(x-3)=2x-2 | | 12=22-5d | | (-7x)+(-6)+(-23x)=180 | | 5x+10=x+48 | | 2=z/9-3 | | 4/3q+8=12 | | 3x-23+90=180 | | (5x+1)+(14x)+(4x-5)=180 | | 1/3c+10=12 | | 5+4x-5x=9 | | x/8-22=20 | | 2y-4(y+1)=-(5y+6)+y | | X^2-9x=120 | | 7x-11=10x | | 8y=24y | | 4y-3=9y | | -5x+52=11x-44 | | 5w=2w=1 | | 25=v+129/8 | | 40=15x+100 | | 60(5x-20)=90 | | 5/3y+6=4 | | 2x^+20x+18=0 | | 2=d/13-11 | | 300/r=20 | | 10(4x+1)=108 | | 18=m+264/30 | | p+4.5=18 | | (x+28)+(x=28)+(x)=180 | | p-4.5=18 | | 315/n=21 |

Equations solver categories