If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(x+40)=(3x-17)(2x-5)
We move all terms to the left:
(x+40)-((3x-17)(2x-5))=0
We get rid of parentheses
x-((3x-17)(2x-5))+40=0
We multiply parentheses ..
-((+6x^2-15x-34x+85))+x+40=0
We calculate terms in parentheses: -((+6x^2-15x-34x+85)), so:We add all the numbers together, and all the variables
(+6x^2-15x-34x+85)
We get rid of parentheses
6x^2-15x-34x+85
We add all the numbers together, and all the variables
6x^2-49x+85
Back to the equation:
-(6x^2-49x+85)
x-(6x^2-49x+85)+40=0
We get rid of parentheses
-6x^2+x+49x-85+40=0
We add all the numbers together, and all the variables
-6x^2+50x-45=0
a = -6; b = 50; c = -45;
Δ = b2-4ac
Δ = 502-4·(-6)·(-45)
Δ = 1420
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1420}=\sqrt{4*355}=\sqrt{4}*\sqrt{355}=2\sqrt{355}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(50)-2\sqrt{355}}{2*-6}=\frac{-50-2\sqrt{355}}{-12} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(50)+2\sqrt{355}}{2*-6}=\frac{-50+2\sqrt{355}}{-12} $
| 6x-6=x-7 | | 1/2v-5/3=-7/5 | | +6)-3-1132x=-4 | | 9-2u=u | | 5x+3=-6x=14 | | 8+2/3x=5/6 | | 63+7v=14v | | 18x-7=16x+1 | | 14v−13v=9 | | -n=4- | | 4y+4y+2=10 | | 317n−4=31 | | 12+38=w | | 3(3x+6)=6x+33 | | 2-x+4/2=1 | | 5(x-8)=75 | | 2x=6-x=2+3x-8 | | 10(v-3)=-10(v-9) | | 6+x/7=52 | | -d+6-4d=-5+2d | | 4x-7+-3x=28 | | (2x+10)=-15 | | 2x-9=5+2x | | 4c+2=3c-6+8c | | 6p-3=48 | | -6u+3/2=-7/5u-7/5 | | 8b-3=5+2b | | 4x+13=8x+45 | | 7-3x=10+3 | | x-(-1)=28 | | 5/6x+6=11 | | 7-3a-2=9+3a |