If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(x+42)3x=90
We move all terms to the left:
(x+42)3x-(90)=0
We multiply parentheses
3x^2+126x-90=0
a = 3; b = 126; c = -90;
Δ = b2-4ac
Δ = 1262-4·3·(-90)
Δ = 16956
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{16956}=\sqrt{36*471}=\sqrt{36}*\sqrt{471}=6\sqrt{471}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(126)-6\sqrt{471}}{2*3}=\frac{-126-6\sqrt{471}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(126)+6\sqrt{471}}{2*3}=\frac{-126+6\sqrt{471}}{6} $
| 1/6a=-17 | | 3(6+4x)=102 | | x/7+10.1=-1.1 | | 1/5(k-1)=10 | | 5x-4=-4x+9 | | 8b-7=8=13b | | 14*a=-42 | | 4(x3)=4 | | -7.5=y/4-1.1 | | ×+20+2x=10-2x-15 | | 3/4t+2=5/8t-2 | | 4(4m-3)=8m | | 5x-10=-3+6 | | x/8-12=44 | | 3.9k=2.1k=5.4k | | 3(x+6)=84 | | 0=-16t^2+26t+7 | | 5y^2=-33y | | -4r-11=11r+19 | | 122-v=184 | | 4.5*2*3=g | | 10.4=4z | | 14b-7b=7 | | 10.4=4x | | 3x-3=6x-10 | | 6x+30=-6(x-7) | | 6k^2-k-18=0 | | 5x(x-7)=30 | | (x)(x-6)=91 | | 5x^2=-58x | | 2*10^-2x=186 | | 5(2-x)-3(x+1)=4-3(x-2) |