(x+47)(2x-11)+x=180

Simple and best practice solution for (x+47)(2x-11)+x=180 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (x+47)(2x-11)+x=180 equation:



(x+47)(2x-11)+x=180
We move all terms to the left:
(x+47)(2x-11)+x-(180)=0
We add all the numbers together, and all the variables
x+(x+47)(2x-11)-180=0
We multiply parentheses ..
(+2x^2-11x+94x-517)+x-180=0
We get rid of parentheses
2x^2-11x+94x+x-517-180=0
We add all the numbers together, and all the variables
2x^2+84x-697=0
a = 2; b = 84; c = -697;
Δ = b2-4ac
Δ = 842-4·2·(-697)
Δ = 12632
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{12632}=\sqrt{4*3158}=\sqrt{4}*\sqrt{3158}=2\sqrt{3158}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(84)-2\sqrt{3158}}{2*2}=\frac{-84-2\sqrt{3158}}{4} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(84)+2\sqrt{3158}}{2*2}=\frac{-84+2\sqrt{3158}}{4} $

See similar equations:

| 2(3b-4)=1b+3 | | 11y+33=88 | | 1/5x+-6=2/5x+10 | | 4x+2x-5=7x1 | | 4x+16-2x=18+3x+4 | | 5b+4b+4b+5b=360 | | 2/5(x)+1/2=6 | | 3=t-2/2 | | 9x+0.3=36.3 | | ×x^{2}=5x-6 | | -42x-6=-8x-27x-36 | | 2x=1-4=-2x-3 | | 4(x+3)^2-5=-53 | | 6+2.50x=16+(1) | | 2(b-9)=4 | | 15x-4=13x+8 | | 5m-23=11 | | 5x+29=9x-15 | | -4/m=-2 | | -9x+8x+24=4-12x-13 | | -9c-(-6c)=6 | | 240d=-12 | | 8(6)w=154 | | (x-7)^2=5 | | 32=-2d+6 | | (-1/6)x+(2/3)x=-4/3-3/5 | | -7x-28+16=5x-10x | | n^2+4+1=325 | | 2(u+9)=4u+28 | | 22+2x=-38+12x | | 12v-4v=8 | | u+8/3=4 |

Equations solver categories