(x+5)(3x-4)-3(x+2)+4=0

Simple and best practice solution for (x+5)(3x-4)-3(x+2)+4=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (x+5)(3x-4)-3(x+2)+4=0 equation:



(x+5)(3x-4)-3(x+2)+4=0
We multiply parentheses
(x+5)(3x-4)-3x-6+4=0
We multiply parentheses ..
(+3x^2-4x+15x-20)-3x-6+4=0
We add all the numbers together, and all the variables
(+3x^2-4x+15x-20)-3x-2=0
We get rid of parentheses
3x^2-4x+15x-3x-20-2=0
We add all the numbers together, and all the variables
3x^2+8x-22=0
a = 3; b = 8; c = -22;
Δ = b2-4ac
Δ = 82-4·3·(-22)
Δ = 328
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{328}=\sqrt{4*82}=\sqrt{4}*\sqrt{82}=2\sqrt{82}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(8)-2\sqrt{82}}{2*3}=\frac{-8-2\sqrt{82}}{6} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(8)+2\sqrt{82}}{2*3}=\frac{-8+2\sqrt{82}}{6} $

See similar equations:

| x-0.93x=847 | | -2w-1=-10w-20 | | 4=10b+6(2-b) | | -7-m=12 | | 25=x/2+16 | | 2m-20=10-7m | | x=322 | | n^2/2+19=27 | | 3x+8-4x-12+6x=-9 | | 2/x+3/x=35/4 | | 8x-4=3x-29 | | 0.5y+0.75y=125 | | x+7=132 | | 2(3/5c-2)+1/2c=4-4/5c | | x/9=7/15 | | c-2=25 | | 2(t+1)=4+2t | | 5y-25y=75 | | -6(v+1)=9v-21 | | -2y+21=-9(y-7) | | 4(w+7)-8w=-4 | | 2048=1(2)^(n-1) | | 25x+6x=124 | | 2(31-y)+2y=62 | | -9+2x=18 | | -3(x+4)=x-8+2(3x+2) | | -10x+3=30 | | 5(w+3)=-6(2w-1)+2w | | x+36=96. | | 3(n+1)=2n-8 | | -3/5y-7/19y=26 | | 13x+3x^2-10=0 |

Equations solver categories