(x+5)(x-2)=(2x+1)(x-2)

Simple and best practice solution for (x+5)(x-2)=(2x+1)(x-2) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (x+5)(x-2)=(2x+1)(x-2) equation:



(x+5)(x-2)=(2x+1)(x-2)
We move all terms to the left:
(x+5)(x-2)-((2x+1)(x-2))=0
We multiply parentheses ..
(+x^2-2x+5x-10)-((2x+1)(x-2))=0
We calculate terms in parentheses: -((2x+1)(x-2)), so:
(2x+1)(x-2)
We multiply parentheses ..
(+2x^2-4x+x-2)
We get rid of parentheses
2x^2-4x+x-2
We add all the numbers together, and all the variables
2x^2-3x-2
Back to the equation:
-(2x^2-3x-2)
We get rid of parentheses
x^2-2x^2-2x+5x+3x-10+2=0
We add all the numbers together, and all the variables
-1x^2+6x-8=0
a = -1; b = 6; c = -8;
Δ = b2-4ac
Δ = 62-4·(-1)·(-8)
Δ = 4
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{4}=2$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6)-2}{2*-1}=\frac{-8}{-2} =+4 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6)+2}{2*-1}=\frac{-4}{-2} =+2 $

See similar equations:

| (t+8)-2=12 | | -27.9=-3.1s | | x=(3/5)57 | | -7=3-w | | 13=10b-10 | | 0=5/2x-4 | | 4x-6=2(3x-2) | | 2(k+3)=8 | | 19+31=26c-74 | | 14d-11d+5=17 | | 4=4(d-4) | | 7=47-k | | -13=-9+n/3 | | 8=4(j-13) | | -a-5=-5+7a | | 3(h-15)=6 | | (x+3)5/9=40 | | 13-8q=4(-9-3q) | | 2y+1y-4-y+2=18 | | 36/y=6 | | 5-6n=-13+3n | | g-5/3=1 | | 4=2*3.14r | | -6/k=-2 | | 26/4=x/50 | | -4=2(f-18) | | x-0,4x=120 | | 4+0.6(15+2x)=25 | | 2(2/5w)+(3/5)=21(3/5) | | (x+2)-3=-10 | | 16v-9v-5=16 | | (4x+6)|2=9 |

Equations solver categories