(x+5)(x-5)=x(-5x-10)

Simple and best practice solution for (x+5)(x-5)=x(-5x-10) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (x+5)(x-5)=x(-5x-10) equation:



(x+5)(x-5)=x(-5x-10)
We move all terms to the left:
(x+5)(x-5)-(x(-5x-10))=0
We use the square of the difference formula
x^2-(x(-5x-10))-25=0
We calculate terms in parentheses: -(x(-5x-10)), so:
x(-5x-10)
We multiply parentheses
-5x^2-10x
Back to the equation:
-(-5x^2-10x)
We get rid of parentheses
x^2+5x^2+10x-25=0
We add all the numbers together, and all the variables
6x^2+10x-25=0
a = 6; b = 10; c = -25;
Δ = b2-4ac
Δ = 102-4·6·(-25)
Δ = 700
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{700}=\sqrt{100*7}=\sqrt{100}*\sqrt{7}=10\sqrt{7}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(10)-10\sqrt{7}}{2*6}=\frac{-10-10\sqrt{7}}{12} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(10)+10\sqrt{7}}{2*6}=\frac{-10+10\sqrt{7}}{12} $

See similar equations:

| (x+5)(x-5)=x(+5x+10) | | 15x+14=299 | | -3j=-3-6j | | 3p+10=5p-10 | | (x+5)(x-4)=x(+7x+20) | | -6r+8=-10-6r | | a^2+8a-10=0 | | -6w-4w=-10w | | r^2-29=0 | | 4n+3-2n-7=20 | | 11d-9d=5d+28 | | 1.2x-5.3=7x-3.7 | | F(10)=2x-3 | | (9x+2)=(2x+20) | | F(x)=110 | | (9x+2)=(5x-18) | | 5(x+4)=3x=28 | | (2x-2)+(4x+2)=180 | | 15=7(4p+1)+8(1+6p) | | (2x-29)+(7x+2)=180 | | (2x-29)=(7x+2) | | (5x+24)=(6x-6) | | 3(x-2)^2=66 | | (3x-23)=(7x-7) | | (3x-23)=(7x07) | | (5x+15)+(3x+15)=180 | | F=9/2(n-20) | | (5x+15)=(3x+15) | | (2x+22)=(4x+2) | | 7x=9=8x-8 | | (7x+9)+(8x-8)=180 | | 7x+9+8x-8=180 |

Equations solver categories