(x+5)*3=(x-5)*3x

Simple and best practice solution for (x+5)*3=(x-5)*3x equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (x+5)*3=(x-5)*3x equation:



(x+5)*3=(x-5)*3x
We move all terms to the left:
(x+5)*3-((x-5)*3x)=0
We multiply parentheses
3x-((x-5)*3x)+15=0
We calculate terms in parentheses: -((x-5)*3x), so:
(x-5)*3x
We multiply parentheses
3x^2-15x
Back to the equation:
-(3x^2-15x)
We get rid of parentheses
-3x^2+3x+15x+15=0
We add all the numbers together, and all the variables
-3x^2+18x+15=0
a = -3; b = 18; c = +15;
Δ = b2-4ac
Δ = 182-4·(-3)·15
Δ = 504
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{504}=\sqrt{36*14}=\sqrt{36}*\sqrt{14}=6\sqrt{14}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(18)-6\sqrt{14}}{2*-3}=\frac{-18-6\sqrt{14}}{-6} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(18)+6\sqrt{14}}{2*-3}=\frac{-18+6\sqrt{14}}{-6} $

See similar equations:

| 10x+1=50 | | 2t^2+5t+25=0 | | -1/5+b=2/3 | | 7y-4=6 | | 3z-4=26 | | 2x-6=-3x-12 | | 4x+17=778 | | 3x-5=12-3x | | 0.08x+0.09(x+2,000)=860 | | 6x-103=65 | | 35+x+2x=215 | | 6x-130=65 | | 3x-103=65 | | 8-4a=108 | | 3(x+2)-2x=-2(x-3)=3 | | 2018x^2+x-2017=0 | | 5(x1)+3(2x)=0 | | 2(2x-4=24 | | 2(2x-8)=10 | | 0.5x0.2(18-x)=5.4 | | 2(4x-10=4(2x+3) | | (3x+2)(x+1)=(x+4)(x-5) | | 10x+3=5x+37 | | 5x+3/2=2x-1/3 | | 2(b+11)=6 | | ​−1.6(2c+12)=12 | | x^2+3x=x^2+15 | | x+97=45 | | 3=-16x^2+80x+3 | | 4(3p-3)+3=23 | | (x+3)-12=9 | | )22x+1-(2+x)-7=3x+7 |

Equations solver categories