(x+5)*3=x(5x-17)

Simple and best practice solution for (x+5)*3=x(5x-17) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (x+5)*3=x(5x-17) equation:



(x+5)*3=x(5x-17)
We move all terms to the left:
(x+5)*3-(x(5x-17))=0
We multiply parentheses
3x-(x(5x-17))+15=0
We calculate terms in parentheses: -(x(5x-17)), so:
x(5x-17)
We multiply parentheses
5x^2-17x
Back to the equation:
-(5x^2-17x)
We get rid of parentheses
-5x^2+3x+17x+15=0
We add all the numbers together, and all the variables
-5x^2+20x+15=0
a = -5; b = 20; c = +15;
Δ = b2-4ac
Δ = 202-4·(-5)·15
Δ = 700
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{700}=\sqrt{100*7}=\sqrt{100}*\sqrt{7}=10\sqrt{7}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(20)-10\sqrt{7}}{2*-5}=\frac{-20-10\sqrt{7}}{-10} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(20)+10\sqrt{7}}{2*-5}=\frac{-20+10\sqrt{7}}{-10} $

See similar equations:

| 4=0.4x=0.5x-6 | | x+5/x=5x-17/3 | | y+7=89 | | 4y+3y+2=y-4 | | z+6/4-z-15/5=3 | | 1/4(4t-8)=11/4t-t+8/8 | | 0.25x-6=0.33x | | 1/4x-6=1/3x | | X-100=-0.25x20 | | X-100=1.50x20 | | c-24=36 | | 0.2x-0.15=0.15 | | 15x=-27+6x | | 4x-63=27-x | | -0,8x-2Y=11,6 | | -15.4=7.7x | | x+7*3-x+2=53 | | 24/4(8/4$=c | | k3-5=34 | | 7^5x=11^3-x | | u+8/15=4/5 | | 9t2+3t=0 | | 2x-200=x+300 | | 2x+28=4x-16 | | 6=3.14r^2 | | √3x+1-√x+4=1 | | 13-8(3w+5)=6(1+w) | | (4x-2)^2=57 | | 6(9x)+3x-2=0 | | x-4+4=12+4 | | 6x^2-108x+112=0 | | 195=-x+120 |

Equations solver categories