(x+5-1)(x-4)(2)=266

Simple and best practice solution for (x+5-1)(x-4)(2)=266 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (x+5-1)(x-4)(2)=266 equation:


Simplifying
(x + 5 + -1)(x + -4)(2) = 266

Reorder the terms:
(5 + -1 + x)(x + -4)(2) = 266

Combine like terms: 5 + -1 = 4
(4 + x)(x + -4)(2) = 266

Reorder the terms:
(4 + x)(-4 + x)(2) = 266

Reorder the terms for easier multiplication:
2(4 + x)(-4 + x) = 266

Multiply (4 + x) * (-4 + x)
2(4(-4 + x) + x(-4 + x)) = 266
2((-4 * 4 + x * 4) + x(-4 + x)) = 266
2((-16 + 4x) + x(-4 + x)) = 266
2(-16 + 4x + (-4 * x + x * x)) = 266
2(-16 + 4x + (-4x + x2)) = 266

Combine like terms: 4x + -4x = 0
2(-16 + 0 + x2) = 266
2(-16 + x2) = 266
(-16 * 2 + x2 * 2) = 266
(-32 + 2x2) = 266

Solving
-32 + 2x2 = 266

Solving for variable 'x'.

Move all terms containing x to the left, all other terms to the right.

Add '32' to each side of the equation.
-32 + 32 + 2x2 = 266 + 32

Combine like terms: -32 + 32 = 0
0 + 2x2 = 266 + 32
2x2 = 266 + 32

Combine like terms: 266 + 32 = 298
2x2 = 298

Divide each side by '2'.
x2 = 149

Simplifying
x2 = 149

Take the square root of each side:
x = {-12.206555616, 12.206555616}

See similar equations:

| yx^6+343y^7=0 | | 15c+5d= | | 2(3-4d)=16 | | (x+1)(x-4)(2)=266 | | 8m^6-n^6=0 | | 26(y-947)=728 | | 1029x^4+648x=0 | | 5x+4=-6+3x+24 | | 246x+372y=20 | | (11-2x)(26-2x)=216 | | x+2x+8=20 | | 57x+289y=1 | | 54x^5-250x^2=0 | | 11+(63-x)+(27-x)+x=88 | | 49x^4-14x^2+1=0 | | Z^10+7=6 | | 5c+2.8=15.8 | | 7(x+1)=(3x+6)4 | | .25x+10=20 | | 5y-6.1=3.4y-1.46 | | 5x+25-2x+64= | | 7*1+x=3x+6*4 | | 0.3(a-24)=0.6a | | 9x=54-6y | | 5(2y+1)-12=3(3y-2)+17 | | 5(x-9)-10=26x-307 | | 8a^2+15a-2=0 | | y=(x^2)+(6x)-2 | | 5(x+9)+2=-9(x-9)-7 | | 1*7+x=2x+1*3 | | 5(6x-5)-3(-3x-11)=20x+16 | | 9x^2r+14xr+5r=0 |

Equations solver categories