(x+59)(+x+51)+84=180

Simple and best practice solution for (x+59)(+x+51)+84=180 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (x+59)(+x+51)+84=180 equation:



(x+59)(+x+51)+84=180
We move all terms to the left:
(x+59)(+x+51)+84-(180)=0
We add all the numbers together, and all the variables
(x+59)(x+51)+84-180=0
We add all the numbers together, and all the variables
(x+59)(x+51)-96=0
We multiply parentheses ..
(+x^2+51x+59x+3009)-96=0
We get rid of parentheses
x^2+51x+59x+3009-96=0
We add all the numbers together, and all the variables
x^2+110x+2913=0
a = 1; b = 110; c = +2913;
Δ = b2-4ac
Δ = 1102-4·1·2913
Δ = 448
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{448}=\sqrt{64*7}=\sqrt{64}*\sqrt{7}=8\sqrt{7}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(110)-8\sqrt{7}}{2*1}=\frac{-110-8\sqrt{7}}{2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(110)+8\sqrt{7}}{2*1}=\frac{-110+8\sqrt{7}}{2} $

See similar equations:

| 2(2a+3a)=2a+2(a+6) | | 0.002+x^2-0.002*x=0 | | 3h×h=1875 | | 59+x+84+51+x=180 | | 5x-(2x+13)=7x-13 | | 3h(h)=1875 | | 44.4x-30.6x=0 | | x²-2x+3/2=0 | | x²-2x+1.5=0 | | 3^x-2+9^x1=84 | | 2=x/0.5+7 | | 5x-19=27 | | 2(5x−15)2−8(5x−15)+6=0 | | X/3-1=(3/4)x+3 | | X/2+1=24/x | | 8(x-8)=-40 | | X^3-4x^2+5x+1=0 | | 3+11m-1=6m+20-4m | | x/(-5)=15 | | (8-2i)(9=i) | | 5(2x+9)+2(x+11=3(3x+4)+46 | | 0,2x=198000-x | | 0,5x²-3x-8=0 | | 3x2+13x–10=0 | | 6.1n-4=5.1n-4 | | 3/5(2x+3)=1/2(3x-6) | | 3(2x+5=36 | | r-41=-41 | | 97+x=64+27 | | 7x+3=2(x-6) | | (x-1)(2x+3)=-2 | | 5x-19=-3(2x-1) |

Equations solver categories