If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(x+6)(x)=1
We move all terms to the left:
(x+6)(x)-(1)=0
We multiply parentheses
x^2+6x-1=0
a = 1; b = 6; c = -1;
Δ = b2-4ac
Δ = 62-4·1·(-1)
Δ = 40
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{40}=\sqrt{4*10}=\sqrt{4}*\sqrt{10}=2\sqrt{10}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6)-2\sqrt{10}}{2*1}=\frac{-6-2\sqrt{10}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6)+2\sqrt{10}}{2*1}=\frac{-6+2\sqrt{10}}{2} $
| (w^2)-w-12=0 | | 17n-10-16n=7 | | 0.75(8b+40-1=4b+14 | | 36-(10n+40)=6 | | -t+4=0 | | -1=1.2x+10 | | m=-3(5,7) | | 6x^2+30x+9=0 | | -4=0-0.75x | | c=2(3.14)16 | | x(2x-9)=425 | | 803=x×.2 | | (1+u)(4u+5)=0 | | 6+24x^2=0 | | -5/v=9/10 | | 5w^2+10=100 | | -1=1.6x+4 | | 0.4-0.1x^2=0 | | 2(a+4)=20+5(a-5) | | 2x+28+5x=15 | | (3z-7)(9-z)=0 | | (8-u)(5u-7)=0 | | 2b+-1b+5b=16-16 | | 2b+-1b+5b=4(4)+-16 | | -3m+8=m+20 | | n(n+1)(n+2)=1320 | | 2(a+3)=10+4(a-8) | | 0.24x+2(0.03+3)=12 | | x+5(-3+x)=3(-x+5)+2(x+2) | | 8(x-2)-2(x+4)=10+5(2x-8) | | 5-7x=7-5x | | 3(-x+5)=2 |