(x+6)(x-4)=(2x+5)(x-4)

Simple and best practice solution for (x+6)(x-4)=(2x+5)(x-4) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (x+6)(x-4)=(2x+5)(x-4) equation:



(x+6)(x-4)=(2x+5)(x-4)
We move all terms to the left:
(x+6)(x-4)-((2x+5)(x-4))=0
We multiply parentheses ..
(+x^2-4x+6x-24)-((2x+5)(x-4))=0
We calculate terms in parentheses: -((2x+5)(x-4)), so:
(2x+5)(x-4)
We multiply parentheses ..
(+2x^2-8x+5x-20)
We get rid of parentheses
2x^2-8x+5x-20
We add all the numbers together, and all the variables
2x^2-3x-20
Back to the equation:
-(2x^2-3x-20)
We get rid of parentheses
x^2-2x^2-4x+6x+3x-24+20=0
We add all the numbers together, and all the variables
-1x^2+5x-4=0
a = -1; b = 5; c = -4;
Δ = b2-4ac
Δ = 52-4·(-1)·(-4)
Δ = 9
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{9}=3$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(5)-3}{2*-1}=\frac{-8}{-2} =+4 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(5)+3}{2*-1}=\frac{-2}{-2} =1 $

See similar equations:

| 4(x+1)+6=4x+10 | | 64=3v+5v | | 3(x+5)=3x+10 | | 17u-8u=54 | | 7x+11=9+x | | 5+x=20+x | | (3p/p-5)-(2/p-3)=p/p+3 | | 3.4^x=11 | | 9(x-10)+3x=12 | | -6x+3x=5(-4x+7)+3(-7+5x) | | -3a+2(a+3)=4a-7(3+2a) | | N=0.8(210-a) | | 2(4+3n)-3(n+4)=-7n+6n | | -44-10x=-7(x+8) | | 3-(x+2)=2(x-3)-3(x-2) | | 4+x=19+x | | 6(3-4a)=54-12a | | -v-4v=5v | | -4(8-7x)=8x+8 | | 5z-4z=32 | | 2(=-24x-8) | | 2.4(2x+3)=-1.2x | | -y+4=-6 | | 34-8v=7(8+2v) | | -7(x+1)=3x+43 | | -1.6=0.3x+2.6 | | 3x/7+5=-6 | | 4(x+3)=-6x-8 | | 12/7y=-36 | | -3+8a=a+11 | | |x/7|+6=-7 | | -4.4(x-4.75)=17.6 |

Equations solver categories