(x+62)(x+40)=180

Simple and best practice solution for (x+62)(x+40)=180 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (x+62)(x+40)=180 equation:



(x+62)(x+40)=180
We move all terms to the left:
(x+62)(x+40)-(180)=0
We multiply parentheses ..
(+x^2+40x+62x+2480)-180=0
We get rid of parentheses
x^2+40x+62x+2480-180=0
We add all the numbers together, and all the variables
x^2+102x+2300=0
a = 1; b = 102; c = +2300;
Δ = b2-4ac
Δ = 1022-4·1·2300
Δ = 1204
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{1204}=\sqrt{4*301}=\sqrt{4}*\sqrt{301}=2\sqrt{301}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(102)-2\sqrt{301}}{2*1}=\frac{-102-2\sqrt{301}}{2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(102)+2\sqrt{301}}{2*1}=\frac{-102+2\sqrt{301}}{2} $

See similar equations:

| p^2-10p+7=0 | | x+74+x+100=180 | | x+2+x+4=180 | | x+93+70=180 | | 1/3N=2/5x80 | | x+37+89=180 | | 0-2=4x+2-2 | | -23=-2n-5-4n | | 2x+37=45 | | x-38+2x-79=90 | | (7x/4)–(3x/8)=11 | | 4n+3n-1=6 | | 6x2−12x−210=0 | | 3=3-3n+1n | | (t*t)-t/2=66 | | -2(2f-3)-1/2f=-3 | | 8x-6=4x-60 | | -4(7+2x-3)=0 | | -4(7+2x-3)=-4(7+2x-3) | | X^2-3x^2+5x-6=0 | | 3x-5x=6x-6+7 | | 16+3(15+y)-8=65 | | 8x-19=-6x+9 | | (5x+2)+6x=180 | | x+(x–20)=90 | | 3/2c=0 | | 34+7x+1=90 | | 3x+129+7x+1=90 | | 3a+11=4a+6 | | 8x/11=x/8+53 | | 8x÷11=x÷8+53 | | 1/3x+9-2/x+3=2 |

Equations solver categories